
Parallel Execution Fee Mechanisms

No Author Given

No Institute Given

Abstract. This paper investigates how pricing schemes can achieve ef-
ficient allocations in blockchain systems featuring multiple transaction
queues under a global capacity constraint. I model a capacity-constrained
blockchain where users submit transactions to different queues—each
representing a submarket with unique demand characteristics—and de-
cide to participate based on posted prices and expected delays. I find
that revenue maximization tends to allocate capacity to the highest-
paying queue, whereas welfare maximization generally serves all queues.
Optimal relative pricing of different queues depends on factors such as
market size, demand elasticity, and the balance between local and global
congestion. My results have implications for the implementation of local
congestion pricing for evolving blockchain architectures, including paral-
lel transaction execution, directed acyclic graph (DAG)-based systems,
and multiple concurrent proposers.
Keywords: Blockchain, Fintech, Transactions, Parallel Execution, Fee
Markets, Consensus

2 No Author Given

1 Introduction

Blockchain technology is rapidly reshaping the global financial landscape.
In the United States, a notable milestone occurred in January 2024 when
the Securities and Exchange Commission approved the trading of Bit-
coin ETFs on public exchanges [17]. Cryptocurrencies such as Bitcoin
and Ethereum have gained widespread adoption, enabling peer-to-peer
transactions without the need for traditional intermediaries like banks.
On platforms like Ethereum, smart contracts—self-executing agreements
with conditions encoded in software—facilitate various financial services,
from loans and insurance to decentralized exchanges.

Blockchain technology operates by executing transactions in a decen-
tralized manner, ensuring that transactions are ultimately executed (live-
ness) and that a decentralized network of computers—referred to as min-
ers in proof-of-work systems or validators in proof-of-stake systems—can
agree on the state of the blockchain after execution (safety). Despite the
growing importance of blockchain technology, there are still significant
limitations in their scalability, particularly in the efficient execution of
transactions in the presence of congestion. As blockchain applications
expand beyond cryptocurrencies into decentralized finance (DeFi), sup-
ply chain management, and digital identity, the efficient allocation of
blockchain resources has become increasingly critical.

Traditional blockchain protocols often rely on simple fee-based models
where users attach fees to their transactions, and miners or validators
prioritize transactions based on these fees. While straightforward, such
Transaction Fee Mechanisms (TFMs) can lead to inefficiencies, includ-
ing congestion of parts of the blockchain state, high transaction fees
during peak demand, and suboptimal resource allocation.1 Moreover, as
blockchains evolve to allow for parallel transaction settlement and sup-
port complex decentralized applications, the need for more sophisticated
mechanisms that can handle heterogeneous transaction types becomes
apparent.

While TFMs that guarantee the inclusion of a transaction in the next
block are well-studied [5], [15], [?], [14], [13], [9], little is known
about the design of Execution Fee Mechanisms (EFMs). EFMs refer
to the protocols and systems that determine the order and manner in
which transactions are processed and finalized on a blockchain network.
In any decentralized system like blockchain, transactions are submitted
by multiple users, often simultaneously. The mechanism by which these
transactions are sequenced and confirmed is crucial for maintaining the
network’s integrity, security, and performance.

Parallel EFMs are at the heart of several emerging blockchain systems,
including parallel execution blockchains, Directed Acyclic Graph (DAG)–
based blockchains, and blockchains with multiple concurrent proposers.

1 For three hours on April 30, 2022, it cost at least $6500 to send
any transaction on the Ethereum blockchain because of a single antici-
pated NFT collection release; see https://www.coindesk.com/business/2022/05/01/
bayc-team-raises-285m-with-otherside-nfts-clogs-ethereum/.

https://www.coindesk.com/business/2022/05/01/bayc-team-raises-285m-with-otherside-nfts-clogs-ethereum/
https://www.coindesk.com/business/2022/05/01/bayc-team-raises-285m-with-otherside-nfts-clogs-ethereum/

Parallel Execution Fee Mechanisms 3

For instance, parallel execution blockchains2 divide the state represented
by the blockchain into multiple, non-overlapping partitions or local fee
markets, each of which can handle transactions independently.3 Opti-
mal pricing of these local markets can allow for a EFM where fees are
determined by the demand within each partition rather than the en-
tire network. In DAG-based blockchains4, transactions are included in a
graph of blocks without requiring them to be ordered in a single chain.
However, their EFM is crucial for organizing the unordered transactions
into a logical sequence for execution and achieving consensus on the fi-
nal state across the entire network.5 Lastly, in blockchains with multiple
concurrent proposers6 a key challenge is to ensure that concurrent pro-
posals do not lead to conflicts or forks that compromise the network’s
safety. A EFM is, therefore, needed to aggregate proposals from multiple
validators or proposers.

In this paper, I embed a general queuing model into the standard price
theory framework and study optimal posted-price EFMs for blockchains
that can execute independent transactions in parallel. I model a capacity-
constrained blockchain execution system as an N -queue system that
serves delay-sensitive customers. Each queue represents a submarket or a
specific resource requested by transactions. 7 Users submit transactions
to these queues and decide upon arrival whether to proceed based on
the posted price and expected delays that decrease their utility. A global
capacity constraint arises from the need for consensus mechanisms to
consider all transactions across queues. A larger volume of transactions
leads to propagation delay on consensus security; [3].

In the context of this model, I ask the following research questions:
how does revenue maximization affect the allocation of capacity across
queues, and under what conditions does it lead to the exclusion of lower-
paying queues? What are the welfare implications of different pricing
strategies, and how can we design prices that maximize social welfare
while accounting for the global capacity constraint? How do market char-
acteristics such as demand elasticity and market size affect the optimal
relative pricing across queues?

To address these questions, I first examine the case where the protocol
or miners/validators aim to maximize revenue. Formally, such a protocol
maximizes the sum of fees collected from all served queues, subject to the
local equilibrium conditions in each queue and the global capacity con-
straint. The local equilibrium condition ensures that, in each queue, the

2 Such as Solana, Avalanche, or the planned upgrade to the Ethereum blockchain.
3 Note that one may argue that parallel execution is already the case in Ethereum,
given the proliferation of Ethereum Layer 2s, or the co-existence of regular transac-
tions and blobs.

4 Such as Aptos, Sui, and IOTA.
5 See [8] for this process of ”flattening the DAG needed for global consensus on
transactions.

6 Such as in current proposals for the Ethereum blockchain, see https://ethresear.ch/
t/concurrent-block-proposers-in-ethereum/18777.

7 Such as a smart contract, a high-level resource that transactions try to access, or a
shared object in object-centric blockchains.

https://ethresear.ch/t/concurrent-block-proposers-in-ethereum/18777
https://ethresear.ch/t/concurrent-block-proposers-in-ethereum/18777

4 No Author Given

marginal user’s expected utility is her outside option—users join a queue
if their valuation exceeds the price plus expected delay costs. I find that
there exists a threshold capacity level below which allocating all capacity
to the highest-paying queue maximizes revenue. This result highlights a
potential inefficiency in revenue maximization: the system may exclude
transactions from other queues that could contribute positively to social
welfare.

Next, I consider the objective of maximizing social welfare. The analysis
shows that, in contrast to revenue maximization, the welfare-maximizing
allocation generally involves serving all queues. By distributing capacity
across all queues, the system ensures that users in different submarkets
can access the resources they require. Then I derive the socially optimal
relative prices for each queue that implement the welfare-maximizing
allocation. These prices are designed as Pigouvian taxes that internal-
ize both the local and global congestion externalities imposed by each
executed transaction.

To provide further insights, I specialize the model to a setting where
the time between arrivals is exponentially distributed, and execution
times are also exponentially distributed. Each market has an isoelastic
demand function characterized by a specific elasticity parameter. I derive
explicit formulas for the socially optimal prices as a function of market
characteristics such as demand elasticity, market size, and congestion
levels.

When the degree of parallelization is high (i.e., the system can process
many transactions concurrently), and local congestion dominates global
congestion, the ratio of socially optimal prices between any two queues
approximates the ratio of their demand intensities normalized by market
sizes. In particular, when demand is highly elastic and local congestion
effects are strong, the optimal relative price in a queue is approximately
proportional to the ratio of demand relative to market size. This implies
that setting prices based on the relative demand intensity in each queue
approximates the welfare-maximizing solution.

These findings have important implications for the design of Parallel
Execution Fee Mechanisms in evolving blockchain architectures. On the
one hand, a revenue-maximizing validator favors uniform pricing and
serving only the highest-paying user category. On the other hand, by im-
plementing local fee markets—where transactions are assigned to queues
with different relative prices based on the resources they access— proto-
col designers can steer the blockchain closer to efficiency and scalability
in transaction execution. In practice, this means that blockchains can de-
fine local prices for each state, contract, or program object and employ
adaptive base fee mechanisms that adjust prices based on local demand
conditions.8 By doing so, the blockchain can prevent high-demand areas
from congesting the entire network and ensure that capacity is allocated
efficiently across all resources.

8 Such as Ethereum’s EIP-1559 fee mechanism studied in [16] and [13].

Parallel Execution Fee Mechanisms 5

1.1 Related Work

This paper contributes to the broader economics literature on the mar-
ket design of blockchain technology [4], [10], [7]. [5], and [14], [13]
study the question of pricing blockspace—that is, determining optimal
fee mechanisms for including transactions in blockchain blocks under ca-
pacity constraints. [18], [16], [15], [6], and [2] provide foundational
analysis of transaction fee mechanisms, focusing on blockchains with lin-
ear transaction ordering. This work opens the analysis of transaction
execution by modeling complexities introduced by parallel execution in
multi-queue blockchain systems. In doing so, I build on the literature
on the pricing of queues [12], [11], [1] and emphasize the balance be-
tween global and local congestion. Beyond the theoretical contributions,
my results have practical implications for blockchain system design and
can help improve the efficiency and scalability of both new and existing
blockchain technologies. My framework is applicable to other settings
where multi-queue systems are present, and there is potential for con-
gestion, such as supply chain management, cloud computing, and online
service platforms.

The remainder of the paper is organized as follows. Section 2 highlights
the limits of traditional blockchain fee models with a two-queue example.
Section 3 presents the model setup, including users, local equilibrium
conditions, and global inclusion constraints. In Section 4.1, I analyze the
revenue maximization problem and derive the conditions under which
capacity allocation favors the highest-paying queue. Sections 4.2 and 4.3
focus on welfare maximization, characterizing the socially optimal pricing
strategies and their implications. Finally, Section 5 concludes the paper
and suggests avenues for future research.

2 The Problem of Execution in Standard
TFMs: An Example

In this section, I illustrate the challenges associated with executing trans-
actions in standard Transaction Fee Mechanisms (TFMs) through a sim-
ple example. Consider a blockchain system with two separate queues,
Queue A and Queue B, each holding three transactions awaiting inclusion
and execution in the blockchain. The expected values of the transactions
in Queues A and B are E[va] = 10 and E[vb] = 6, respectively.

Figure 1 depicts the state of the two queues. In each period, two new
transactions arrive in each queue. However, due to the necessity for global
consensus, the blockchain can collect and process up to five transactions
at a time.

In Queue A, there are three transactions denoted as a1, a2, and a3,
with individual values of 15, 10, and 5, respectively. Similarly, Queue B
contains transactions b1, b2, and b3, with values of 8, 6, and 4. The higher
expected value in Queue A indicates that, on average, transactions in this
queue are more valuable to the network or its users compared to those
in Queue B.

6 No Author Given

Queue A: E[va] = 10 15

a1

10

a2

5

a3

Queue B: E[vb] = 6 8

b1

6

b2

4

b3

Fig. 1: Example Transaction Queues

2.1 The Problem with Global Ordering and a Uniform
Price

Under a standard TFM, the selection of transactions for inclusion is
typically based on the fees attached to them. With a uniform price for
inclusion and a global ordering for all transactions, the global capacity
constraint can lead to an imbalance in how transactions from different
queues are executed. Specifically, more transactions from Queue A are
processed than those from Queue B, even though transactions from both
queues could be executed in parallel without interference. This results in
Queue B becoming underserved, causing its backlog to grow over time.
Figure 2 illustrates this scenario.
The top portion of the figure represents the global execution order, where
transactions from both Queue A and Queue B are interleaved based on
their arrival times and values. Transactions a1, a2, and b1 are included
in the execution queue. Additionally, new higher-value transactions a∗

4

and a∗
5 (highlighted in red and starred) arrive in Queue A with values of

12 and 7, respectively. Due to their higher values, these transactions are
immediately prioritized in the global ordering.
The middle section shows Queue A’s state. Transaction a3 remains in the
queue with a value of 5. While some transactions from Queue A are being
executed, new higher-value transactions continue to arrive, maintaining
its dominance in the execution queue.
The bottom section illustrates Queue B’s state. Transactions b2 to b5
accumulate in the queue with values ranging from 4 to 7. Despite the
continuous arrival of transactions, Queue B’s transactions are not prior-
itized in the global execution order due to their lower values compared
to those in Queue A.
Because of the global capacity constraint—only five transactions can be
executed at a time—the mechanism tends to favor transactions with

Parallel Execution Fee Mechanisms 7

higher values to maximize immediate throughput or revenue. Transac-
tions from Queue B could be processed in parallel with those from Queue
A without any conflicts or interference. However, the global ordering does
not account for this possibility, resulting in suboptimal use of the sys-
tem’s parallel processing capabilities.

2.2 A Potential Solution: Market Value-Weighted
Ordering

To address the issues above, we study a potential solution we will call
Market Value-Weighted Ordering. Suppose that the expected values of
transactions in Queues A and B, denoted by E[va] and E[vb] respectively,
are known or can be reliably estimated. This information could be de-
rived from historical data, statistical analysis, or real-time monitoring of
transaction patterns.

The key idea is to adjust or normalize the bids of transactions in each
queue according to the expected value of that queue. Specifically, we treat
each transaction as if its bid is scaled by the inverse of the expected value
of its queue. For transactions in Queue A and Queue B, we adjust their
bids as follows:

a′
i =

ai

E[va]
, b′i =

bi
E[vb]

.

By scaling the bids in this manner, we standardize the bids across queues,
allowing for a comparison of transactions based on their relative value
within their respective queues. Figure 3 illustrates these adjusted bids.

Under this Market Value-Weighted Ordering, the system evaluates trans-
actions based on their adjusted bids, resulting in a more balanced exe-
cution of transactions from both queues. Figure 4 illustrates how trans-
actions are selected for execution under this mechanism.

Transactions a′
1, b

′∗
1 , a′

4, b
′∗
5 , and a′

2 are selected for execution. Trans-
actions from Queue B’ that are executed are highlighted in blue. The
lower-value transactions remain in their respective queues, awaiting fu-
ture execution based on their adjusted bids and arrival times.

This example demonstrates the potential social value of relative pricing
and suggests that value-weighted relative pricing of different queues can
be approximately welfare-maximizing. In the remainder of this article, I
will generalize this idea in a model of a blockchain with parallel execution
and a global capacity constraint due to consensus.

3 Model

In this section, I present a formal model of a capacity-constrained blockchain
execution system. The system is modeled as an N -queue system that
serves delay-sensitive customers. These queues can be associated with
each smart contract, each high-level resource that transactions try to
access, or each shared object in the case of object-centric blockchains.

8 No Author Given

Setup. I assume that execution times are independently and identically
distributed (i.i.d.) with unit mean.9 Each user submits a transaction that
arrives in one of the queues i ∈ {1, . . . , N}, following an exogenous Pois-
son process with rate (or market size) Λi. Since the consensus mechanism
takes into account transactions in all queues, there is a global capacity
constraint for inclusion, meaning that the total number of transactions
that can be included across all queues is limited. For simplicity, we con-
sider mechanisms with posted prices pi for each submarket or queue i.
Upon arrival and observing the posted prices, users decide whether or
not to submit their transaction at the posted price pi, taking into account
potential delays and their own valuations.

User Valuations. Users are considered to be atomistic relative to the
market size, meaning that each individual user’s actions have a neg-
ligible impact on the overall system. They differ in their valuations v,
representing their willingness to pay for immediate execution without de-
lay. For each submarket i, valuations are independently and identically
distributed (i.i.d.) draws from a continuous distribution Φi (independent
of arrival and execution times) with probability density function ϕi. I
assume that ϕi is strictly positive and continuous on the positive inter-
val [v, v̄]. Let Φ̄i(v) = 1 − Φi(v) denote the complementary cumulative
distribution function, representing the probability that a user’s valuation
exceeds v. If all transactions with values greater than v join queue i, the
arrival (or demand) rate in market i will be λi = ΛiΦ̄i(v). Conversely,
when the arrival rate is λi, the marginal value v is equal to Φ̄−1

i (λi/Λi),
where Φ̄−1

i is the inverse of Φ̄i.

Following [1], let Vi(λi) denote the expected aggregate (gross) value
in submarket i per unit of time without delay. Then, the downward-
sloping marginal value (or inverse gross demand) function V

′
i (λi) ≡

Φ̄−1
i (λi/Λi) defines a one-to-one mapping between the demand rate λi

and the marginal value V
′
i (λi). Each Vi is increasing and is assumed to

be strictly concave, V
′
i (λi) > 0, V

′′
i (λi) < 0 for λi < Λi.

Delay Costs. Users are sensitive to delays in transaction execution. I
consider the following utility function for a user with valuation v who
pays a price p and experiences a delay of t units of time:

u(v, t, p, i) = v ·Di(t)− Ci(t)− p (1)

In this expression, p is the price paid by the user to submit the transac-
tion. The term Di(t) is a multiplicative delay discount function for queue
i, capturing how the user’s valuation decreases with delay. For example,
Di(t) could be a discount factor like e−dit, where di is the discount rate.
The term Ci(t) is an additive delay cost function for queue i, represent-
ing additional costs incurred due to delay, such as opportunity costs or

9 For transactions with different execution times, we can interpret the derived prices
below as gross prices rather than per-unit prices. This simplification allows us to
focus on the core dynamics without loss of generality.

Parallel Execution Fee Mechanisms 9

penalties. These costs capture a variety of losses that can occur due to
the deterioration of execution performance with delay.10

Let λ ≡ (λ1, . . . , λN) denote a vector of demand rates in each submarket.
Each user in queue i maximizes her own expected utility, which she fore-
casts using the distribution of the steady-state delay W̃ (λi). The delay
depends on the set of paying users only through the resulting demand
rate λi and is not affected by the actions of an individual atomistic user.
In addition, we allowed the individual delay costs Di(t) and Ci(t) to
depend directly on i, which can reflect the selection of different types of
users in queues. Let Di(λi) ≡ E[Di(W̃ (λi))] and Ci(λi) ≡ E[Ci(W̃ (λi))]
be the expected delay discount and delay cost functions, respectively.
Given λi, a user with value vi for submarket i who pays pi has expected
utility

u(vi|pi, λi) ≡ vi ·Di(λi)− Ci(λi)− pi. (2)

Local Equilibrium Demand. I now consider the equilibrium behavior
of users in each queue. Let i ∈ {1, . . . , N} and pi the price in submarket
i. Suppose Vi is continuously differentiable in R+ and that the net value
to the highest value user of being served immediately in each queue is
positive, that is V

′
i (0)Di(0) − Ci(0) > 0. This condition ensures that

there is a positive net benefit to participating in the market for at least
some users. Without loss of generality, I index the queues in decreas-
ing order (without ties) of their net value of being served immediately:

V
′
1 (0)D1(0)−C1(0) > V

′
2 (0)D2(0)−C2(0) > · · · > V

′
N (0)DN (0)−CN (0).

Given a price pi, queue i is active (i.e., has positive demand) if the
highest-value user obtains positive expected utility when served imme-
diately: V

′
i (0) · Di(0) − Ci(0) > pi. The marginal user has valuation

V
′
i (λi(pi)) and zero expected utility in equilibrium. That is, in any Nash

equilibrium, users join if, and only if demand in market i, λi(pi), satisfies

u(V
′
i (λi(pi))|pi, λi) = V

′
i (λi(pi)) ·Di(λi)− Ci(λi)− pi = 0 (3)

This equilibrium condition can be interpreted in at least two ways. If
users can choose which queue to join, entry and exit occur across queues
in equilibrium until the expected utility from joining any queue equals
their outside option (which is normalized to zero).11 Second, if the pro-
tocol dictates which queue transactions are assigned to (e.g., based on
transaction type or resource accessed), entry and exit occur within each
queue, and the expected utility for the marginal user in each queue equals
zero. Users decide whether to participate based on the conditions in their
assigned queue. Thus, the equilibrium condition maps the demand rate
λi to the price in queue i and vice-versa for queues that are active.
Henceforth, we will write such expression as pi(λi).

10 Typical costs due to slow execution can be the failure to purchase a good, loss of an
arbitrage opportunity, sandwich-attacked transactions, and other MEV attacks.

11 This would be, for instance, the case of multi-proposer consensus, or DAG-based
blockchains where users choose to which part of the graph they send their transac-
tions.

10 No Author Given

Global Inclusion Constraint. Because all transactions need to be con-
sidered for consensus before the execution phase, there is a global capac-
ity constraint on the total number of transactions that can be included.
Let κ denote the global capacity of transactions that can be served per
unit of time. The capacity constraint is then

∑N
i=1 λi ≤ κ : (4). This

constraint implies that the sum of the demand rates across all queues
cannot exceed the global capacity κ. It reflects limitations such as block
size, network bandwidth, and the need for synchronization across the
network.
In this analysis, I focus on instances where the global capacity constraint
is binding, meaning that the total demand equals the capacity. This sit-
uation is common in blockchain systems during periods of high demand.
The problem of variable global capacity would deliver similar results.

4 Results

In this section, I analyze the implications of the model for revenue max-
imization and welfare maximization.

4.1 Revenue Maximization

We begin by examining how a protocol or miners/validators aiming to
maximize revenue would set prices and allocate capacity across the dif-
ferent queues.

Revenue. Let S denote the set of served queues, i.e., the queues that are
active and receive a positive capacity allocation. The protocol’s revenue
is the total fees collected from all served queues, which can be expressed
as

∑
i∈S λipi(λi), where λi is the demand rate in queue i, and pi(λi)

is the price charged in queue i as a function of the demand rate. Using
the equilibrium condition from equation (3), the revenue maximization
problem can be expressed in terms of demand rates. For simplicity of
notation, we assume here that all queues are served.12

Π = max
(p1,...,pN)

N∑
i=1

λiV
′
i (λi) ·Di(λi)− λi · Ci(λi) (6)

Our objective is to find the set of prices (p1, p2, . . . , pN) and served queues
S that maximize revenueΠ, subject to the local equilibrium condition (3)
for all served queues and the global capacity constraint (4). I consider
uniform pricing where p1 = · · · = pN = p ∈ R+ and optimal relative
prices (p1, . . . , pN) ∈ RN

+ . The following proposition characterizes the
revenue-maximizing allocation under both pricing strategies.

12 The general expression is

Π = max
S,(pi;i∈S)

∑
i∈S

λiV
′
i (λi) ·Di(λi)− λi · Ci(λi). (5)

Parallel Execution Fee Mechanisms 11

Proposition 1. There exists a threshold capacity κ ∈ (0,+∞) such that
for all total capacities κ ≤ κ, the revenue-maximizing uniform price and
the revenue-maximizing relative prices allocate all capacity to the highest
price queue, i.e., S = {1}.

Proof. The idea of the proof is to construct a small capacity (or equiva-
lently, a large enough level of congestion and price for queue 1) so that
no customers will be willing to join queues 2, . . . , N and net revenue
from queue one is increasing in its allocated capacity. In these condi-
tions, allocating all capacity to queue one is revenue maximizing. Since
V

′
1 (0)D1(0)−C1(0) > V

′
2 (0)D2(0)−C2(0) > · · · > V

′
N (0)DN (0)−CN (0)

without loss of generality, and V
′
i (λ)Di(λ) − Ci(λ) is continuously de-

creasing in λ for all i, there exists κ1 ∈ (0,+∞) such that V
′
1 (κ1)D1(κ1)−

C1(κ1) > V
′
2 (0)D2(0) − C2(0) > · · · > V

′
N (0)DN (0) − CN (0). Denote

gross revenue from queue 1 absent any delays as R1(λ1) = λ1V
′
1 (λ1),

the marginal net revenue from this queue is R
′
1(λ1)D1(λ1) − C1(λ1) +

λ1V
′
1 (λ1)D

′

1(λ1) − λ1C
′

1(λ1). Evaluated at λ1 = 0 yields R
′
1(0)D1(0) −

C1(0) = V
′
1 (0)D1(0)− C1(0) > 0, therefore, by continuity, the marginal

net revenue from queue 1 is increasing in a neighborhood of 0. That
is, ∃ 0 < κ ≤ κ1 such that V

′
1 (κ)D1(κ) − C1(κ) > V

′
2 (0)D2(0) −

C2(0) > · · · > V
′
N (0)DN (0) − CN (0) and the net revenue function

κ 7→ κ[V
′
1 (κ)D1(κ) − C1(κ)] is increasing in [0, κ]. In both the relative

price and uniform price case, for capacity below κ it is revenue maxi-
mizing to allocate all capacity to queue 1, since at those capacities and
prices, no customers will be willing to join queues 2, . . . , N and the total
capacity is used since net revenue from queue one is increasing in this
segment.

This proposition highlights a potential inefficiency in revenue maximiza-
tion: when capacity is limited, the system tends to favor the queue with
the highest-paying users, potentially excluding transactions from other
queues that could contribute positively to social welfare.

4.2 Welfare Maximization

Next, I consider the objective of maximizing social welfare, which takes
into account the total net benefit to all users across all queues rather
than focusing solely on revenue. The protocol’s social welfare over all
queues13

SW = max
λi∈[0,Λi)N

N∑
i=1

Vi(λi) ·Di(λi)− λi · Ci(λi) (8)

13 The general problem is

SW = max
S,λi∈[0,Λi)N ,i∈S

∑
i∈S

Vi(λi) ·Di(λi)− λi · Ci(λi). (7)

12 No Author Given

Subject to the local equilibrium condition (3) and the global inclusion
constraint (4). The protocol’s social welfare is defined as the sum of
the expected net values to all users across all queues, accounting for
delay costs. Under welfare maximization, setting optimal relative prices
(p1, . . . , pN) ∈ RN

+ is equivalent to a planner choosing the demand rates
λi ∈ [0, Λi)

N , i ∈ S directly subject to local equilibrium conditions (3)
in all served queues and the global capacity constraint(4). The follow-
ing proposition shows that the relative price social optimum generically
serves all queues.

Proposition 2. Suppose that the discount rate and linear delay cost
functions are so that the net utility function from queue i, that is Wi ≡
λi 7→ Vi(λi) ·Di(λi)−λi ·Ci(λi) is strictly concave, and ∃ν > 0 such that

W
′
i (0) > ν for all i, and

∑N
i=1(W

′
i)

−1(ν) = κ then in the relative price
social optimum, capacity is allocated in all queues, S = {1, . . . , N}.

Proof. Since eachWi is strictly concave, their sum is strictly concave. Let
λ∗ be an optimal solution to the problem. By the Karush–Kuhn–Tucker
conditions, ∃µ ≥ 0 such that W ′

i (λ
∗
i) = µ if λ∗

i > 0 and W ′
i (λ

∗
i) ≤

µ if λ∗
i = 0 Suppose, for contradiction, that ∃j such that λ∗

j = 0. Then,
W ′

j(0) ≤ µ. But we know that W ′
j(0) > ν, therefore, µ > ν. There

exists at least one index i so that λ∗
i > 0, otherwise total capacity

would be zero. For all i where λ∗
i > 0, we have W ′

i (λ
∗
i) = µ > ν.

Since Wi is strictly concave, W ′
i is strictly decreasing. Therefore, λ∗

i <
(W ′

i)
−1(ν) for all i where λ∗

i > 0. This implies that
∑N

i=1 λ
∗
i <

∑N
i=1(W

′
i)

−1(ν) =
κ. But this contradicts the optimality of λ∗ because we can increase the
objective function by increasing λ∗

j slightly while still satisfying the con-
straint. Therefore, our assumption of the existence of j is a contradiction,
and we conclude that λ∗

i > 0 for all i. That is, all queues are allocated
non-zero capacity.

This proposition indicates that, under welfare maximization, it is opti-
mal to serve all queues, distributing capacity across them in a way that
balances the marginal social welfare contributions. This contrasts with
the revenue-maximizing allocation, which may exclude some queues to
maximize revenue.

4.3 Welfare Maximizing Relative Pricing

Having established that welfare maximization leads to capacity alloca-
tion across all queues, we now derive the welfare-maximizing relative
prices that support this allocation under the conditions of Proposition 2.
Let µ denote the Lagrange multiplier associated with the global capacity
constraint (4). Economically, µ represents the shadow price of including
an additional transaction in the system; it reflects the marginal social
cost of capacity constraints. The following propositions link the socially
optimal prices in each queue to this shadow price and demand charac-
teristics.

Proposition 3. The socially optimal relative prices are given by

pi = −Vi(λi)D
′

i(λi) + λiC
′

i(λi) + µ (9)

Parallel Execution Fee Mechanisms 13

This proposition emerges from the first order condition for λi and re-
placing pi from (3). This expression shows that the socially optimal price
in queue i includes three components. First, the local delay externality
−Vi(λi) · D

′
i(λi) captures the negative impact of increased demand on

the expected delay discount. As λi increases, the expected delay increases
(since the system becomes more congested), reducing the net value for

all users in queue i. Second, the local additive delay cost λi · C
′
i(λi)

represents the additional additive delay costs incurred due to increased
demand. Third, the global capacity externality µ reflects the marginal
cost of consuming limited capacity that could have been used by other
queues.
At the socially optimal prices, the marginal user’s expected net value is
equal to the total externality they impose on the system. This ensures
that users internalize the full social cost of their participation, leading
to an efficient allocation of resources.
To gain further insights, I specialize the model to a setting where the
time between arrivals is exponentially distributed, and the execution
times for each user also follow an exponential distribution. Each mar-
ket has size Λi each with a different isoelastic marginal value function
V

′
i (λi) = (λi/Λi)

−1/εi where εi > 1 represents demand elasticity for

queue/resource i. In this setting, Vi(λi) =
(λi/Λi)

1−1/εi

1−1/εi
.

Assuming that the delay discount function is exponential, D(t) = e−dt

and the additive delay cost is linear C(t) = c× t where c, d > 0, we have
(see Appendix A for detailed derivations)

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(10)

Approximation under High Parallelization. Suppose that the demand
rates λi and λj are small relative to 1 and the discount rate d, reflecting
a high degree of parallelization (i.e., the system can process many trans-
actions concurrently). Under this assumption, we can approximate the
socially optimal relative prices.

Corollary 1. Under the above assumptions, the ratio of the socially op-
timal prices in queues i and j is approximately

pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+ cλi + µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+ cλj + µ
(11)

Proof. First, we compute the derivatives: V ′
i (λi) = Λiλ

−1/εi
i , D

′
(λi) =

− d
(1+d−λi)2

, C
′
(λi) = c

(1−λi)2
. Substitute into the equation for pi, pi =

(λi/Λi)
1−1/εi

1−1/εi
·
(

d
(1+d−λi)2

)
+ λi · c

(1−λi)2
+ µ. Consider the ratio pi/pj .

Assuming λi and λj are small compared to 1 and d we have (1+d−λi)
2 ≈

(1+d)2, (1−λi)
2 ≈ 1, replacing in the expression for relative prices yields

pi
pj

≈
(λi/Λi)

1−1/εi

1−1/εi
· d
(1+d)2

+cλi+µ

(λj/Λj)
1−1/εj

1−1/εj
· d
(1+d)2

+cλj+µ

.

14 No Author Given

The approximate price ratio reveals how the optimal prices depend on
queue-specific characteristics such as market size Λi, demand elasticity
εi, and demand rates λi. When µ is small relative to the other terms (i.e.,
when local congestion effects dominate global capacity constraints), the
price ratio is primarily determined by these queue-specific factors. As
µ increases (i.e., when global congestion becomes more significant), its
effect is to push the price ratio closer to 1, reducing price differentiation
across queues.

Corollary 2. Suppose, in addition to the assumptions of Corollary 1,
that local congestion dominates global congestion (µ is negligible compared
to pi and pj), and demand is perfectly elastic (εi, εj → ∞). Then, the
price ratio is simplified to

pi
pj

≈ λi

λj
· Λj

Λi
(12)

This limit expression offers several insights. First, in the case of per-
fectly elastic demand, the optimal prices are proportional to the ratio
of demand rates normalized by market sizes (λi/Λi). This suggests that
setting prices based on the relative demand intensity in each queue ap-
proximates the welfare-maximizing solution. Second, as the market size
Λi for a congested queue decreases, the optimal price for that queue
diverges from a uniform price, reflecting the higher marginal value of
capacity in smaller markets.

5 Conclusion

In this paper, I investigated posted-price Parallel Execution Fee Mecha-
nisms within a capacity-constrained blockchain system characterized by
multiple queues or local fee markets. My model captures the essential
features of parallel execution in blockchain networks, where transactions
may access different resources or contracts and can be processed concur-
rently. A key aspect of our analysis was the global inclusion constraint
imposed by the consensus mechanism. This constraint necessitates that
all transactions, regardless of their queue, must be considered collectively
for inclusion.
The analysis reveals several key insights. When the objective is to maxi-
mize revenue, especially under limited capacity, the system tends to allo-
cate all capacity to the queue with users willing to pay the highest fees.
In contrast, when the objective is to maximize social welfare, the optimal
allocation generally involves serving all queues. I found that the optimal
relative pricing across different queues depends on several factors, in-
cluding market size, demand elasticity, and the balance between local
and global congestion. In settings where demand elasticity is high, and
local congestion effects dominate, pricing individual queues proportional
to demand relative to market size is approximately welfare-maximizing.
The findings suggest that implementing local fee markets within such
blockchains can improve overall system efficiency. By defining local val-
ues for each state, contract, or object and employing an adaptive base

Parallel Execution Fee Mechanisms 15

fee mechanism for inclusion, transactions can be assigned to queues with
different relative prices. As blockchain technologies evolve towards more
complex architectures, such as parallel execution, Directed Acyclic Graph
(DAG)-based systems, and multiple concurrent proposers, this paper
provides valuable insights for protocol designers.
While this study provides a foundational model for efficient parallel ex-
ecution fee mechanisms, I have abstracted from several aspects of trans-
action execution on blockchains.
One important extension is the study of optimal local priority auctions.
In such a setting, customers could participate in a two-stage bidding
process for entering queues in a system with multiple service points.
Initially, users might bid for priority in a global queue, reflecting the ca-
pacity constraints of the consensus mechanism. Subsequently, they could
bid for specific services in parallel queues, corresponding to different re-
sources or contracts. Studying how to design such auctions to optimize
for social welfare or revenue maximization would be a promising area for
further research.
Another area for future research is the development of dynamic pricing
mechanisms that adapt to changing network conditions, user behaviors,
and congestion levels in real time. While a comprehensive examination
of these complex issues lies beyond the scope of this paper, they offer
promising opportunities for future research and further refinement of my
analysis.

References

1. Afeche, P., Mendelson, H.: Pricing and priority auctions in queueing
systems with a generalized delay cost structure. Management science
50(7), 869–882 (2004)

2. Bahrani, M., Garimidi, P., Roughgarden, T.: Transaction Fee Mech-
anism Design in a Post-MEV World. In: Böhme, R., Kiffer, L.
(eds.) 6th Conference on Advances in Financial Technologies (AFT
2024). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 316, pp. 29:1–29:24. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2024). https://doi.org/10.4230/
LIPIcs.AFT.2024.29, https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.AFT.2024.29

3. Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and
cryptocurrency technologies arvind narayanan. Network Security
2016(8), 4 (2016)

4. Budish, E.: Trust at Scale: The Economic Limits of Cryptocurrencies
and Blockchains*†. The Quarterly Journal of Economics p. qjae033
(10 2024). https://doi.org/10.1093/qje/qjae033, https://doi.org/10.
1093/qje/qjae033

5. Buterin, V.: Blockchain resource pricing. URL: https://ethresear.
ch/uploads/default/original X 2 (2018)

6. Chung, H., Shi, E.: Foundations of transaction fee mechanism de-
sign. In: Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). pp. 3856–3899. SIAM (2023)

https://doi.org/10.4230/LIPIcs.AFT.2024.29
https://doi.org/10.4230/LIPIcs.AFT.2024.29
https://doi.org/10.4230/LIPIcs.AFT.2024.29
https://doi.org/10.4230/LIPIcs.AFT.2024.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.29
https://doi.org/10.1093/qje/qjae033
https://doi.org/10.1093/qje/qjae033
https://doi.org/10.1093/qje/qjae033
https://doi.org/10.1093/qje/qjae033

16 No Author Given

7. Halaburda, H., Haeringer, G., Gans, J., Gandal, N.: The microeco-
nomics of cryptocurrencies. Journal of Economic Literature 60(3),
971–1013 (September 2022). https://doi.org/10.1257/jel.20201593,
https://www.aeaweb.org/articles?id=10.1257/jel.20201593

8. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you
need is dag. In: Proceedings of the 2021 ACM Symposium on Prin-
ciples of Distributed Computing. pp. 165–175 (2021)

9. Kiayias, A., Koutsoupias, E., Lazos, P., Panagiotakos, G.: Tiered
mechanisms for blockchain transaction fees (2023), https://arxiv.
org/abs/2304.06014

10. Leshno, J.D., Strack, P.: Bitcoin: An axiomatic approach and an
impossibility theorem. American Economic Review: Insights 2(3),
269–86 (September 2020). https://doi.org/10.1257/aeri.20190494,
https://www.aeaweb.org/articles?id=10.1257/aeri.20190494

11. Mendelson, H.: Pricing computer services: queueing effects. Commu-
nications of the ACM 28(3), 312–321 (Mar 1985). https://doi.org/
10.1145/3166.3171, https://dl.acm.org/doi/10.1145/3166.3171

12. Naor, P.: The regulation of queue size by levying tolls. Econometrica:
journal of the Econometric Society pp. 15–24 (1969)

13. Ndiaye, A.: Why bitcoin and ethereum differ in transaction fees: A
theory of blockchain fee policies. CEPR Discussion Paper No. 18890
(2024), https://cepr.org/publications/dp18890

14. Ndiaye, A.: Blockchain price vs. quantity controls. Working Paper
(2023)

15. Roughgarden, T.: Transaction fee mechanism design for the
ethereum blockchain: An economic analysis of eip-1559. arXiv
preprint arXiv:2012.00854 (2020)

16. Roughgarden, T.: Transaction fee mechanism design. ACM SIGecom
Exchanges 19(1), 52–55 (2021)

17. SEC: Statement on the approval of spot bitcoin exchange-traded
products. https://www.sec.gov/newsroom/speeches-statements/
gensler-statement-spot-bitcoin-011023 (2024), accessed: 2024-10-22

18. Shi, E., Chung, H., Wu, K.: What Can Cryptography Do
for Decentralized Mechanism Design? In: Tauman Kalai, Y.
(ed.) 14th Innovations in Theoretical Computer Science Confer-
ence (ITCS 2023). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 251, pp. 97:1–97:22. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023). https:
//doi.org/10.4230/LIPIcs.ITCS.2023.97, https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITCS.2023.97

https://doi.org/10.1257/jel.20201593
https://doi.org/10.1257/jel.20201593
https://www.aeaweb.org/articles?id=10.1257/jel.20201593
https://arxiv.org/abs/2304.06014
https://arxiv.org/abs/2304.06014
https://doi.org/10.1257/aeri.20190494
https://doi.org/10.1257/aeri.20190494
https://www.aeaweb.org/articles?id=10.1257/aeri.20190494
https://doi.org/10.1145/3166.3171
https://doi.org/10.1145/3166.3171
https://doi.org/10.1145/3166.3171
https://doi.org/10.1145/3166.3171
https://dl.acm.org/doi/10.1145/3166.3171
https://cepr.org/publications/dp18890
https://www.sec.gov/newsroom/speeches-statements/gensler-statement-spot-bitcoin-011023
https://www.sec.gov/newsroom/speeches-statements/gensler-statement-spot-bitcoin-011023
https://doi.org/10.4230/LIPIcs.ITCS.2023.97
https://doi.org/10.4230/LIPIcs.ITCS.2023.97
https://doi.org/10.4230/LIPIcs.ITCS.2023.97
https://doi.org/10.4230/LIPIcs.ITCS.2023.97
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.97
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.97

Parallel Execution Fee Mechanisms 17

A Appendix

A.1 Expression of delay costs

Proof. We begin by considering the definitions of Ci(λi) and Di(λi):

Ci(λi) = E[C(Ti)] =

∫ ∞

0

C(t)fTi(t)dt (13)

Di(λi) = E[D(Ti)] =

∫ ∞

0

D(t)fTi(t)dt (14)

where fTi(t) is the probability density function of the exponential distri-
bution with rate parameter λi:

fTi(t) = λie
−λit (15)

For Ci(λi), we substitute C(t) = ct and solve:

Ci(λi) =

∫ ∞

0

ctλie
−λitdt (16)

= cλi

∫ ∞

0

te−λitdt (17)

= cλi

[
− t

λi
e−λit

∣∣∣∣∞
0

−
∫ ∞

0

− 1

λi
e−λitdt

]
(18)

= cλi

[
0 +

1

λ2
i

]
(19)

=
c

λi
=

c

1− λi
(20)

For Di(λi), we substitute D(t) = e−dt and solve:

Di(λi) =

∫ ∞

0

e−dtλie
−λitdt (21)

= λi

∫ ∞

0

e−(d+λi)tdt (22)

= λi

[
− 1

d+ λi
e−(d+λi)t

∣∣∣∣∞
0

]
(23)

= λi

[
0 +

1

d+ λi

]
(24)

=
λi

d+ λi
=

1− λi

1 + d− λi
(25)

Thus, when the delay discount function is exponential D(t) = e−dt and
the additive delay cost is linear C(t) = c× t where c, d > 0, the following
equations hold:

Ci(λi) =
c

1− λi

Di(λi) =
1− λi

1 + d− λi
(26)

18 No Author Given

Global Ordering for Execution:

a1

15

a∗
4

12

a2

10

b1

8

a∗
5

7

Queue A: 5

a3

. . .

Queue B: 7

b5

6

b2

5

b4

4

b3

. . .

Fig. 2: Global Ordering under Uniform Price. Newly arrived and executed trans-
actions are highlighted in red and starred.

Queue A’: E[va′] = 1 1.5

a′
1

1

a′
2

0.5

a′
3

Queue B’: E[vb′] = 1 4
3

b′1

1

b′2

2
3

b′3

Fig. 3: Market Value-Weighted Ordering. Each transaction is treated as if its
bid is ai/E[va] or bi/E[vb]

Parallel Execution Fee Mechanisms 19

Market Value-Weighted Ordering for Execution:

a′
1

1.5

b∗
′

1

4
3

a′
4

1.2

b∗
′

5

7
6

a′
2

1

Queue A’: 0.7

a′
5

0.5

a′
3

. . .

Queue B’: 1

b′2

5
6

b′4

2
3

b′3

. . .

Fig. 4: Execution under Market Value-Weighted Ordering. Executed transactions
from queue B’ are highlighted in blue and starred.

	Parallel Execution Fee Mechanisms

