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Abstract. Bitcoin’s proof of work consensus consumes energy and re-
quires dedicated, expensive hardware. Therefore, alternatives have been
proposed, including proof of stake and proof of space. The latter mines
with disk space instead of CPU power. Signum is the only implemented
proof of space blockchain with smart contracts, and runs since ten years.
But its relatively simple consensus algorithm lacks any formalization.
This paper formalizes Signum’s consensus and uses that formalization
to show that Signum is free from block grinding attacks and is largely
protected from challenge grinding attacks. Moreover, this paper proposes
a new protection for Signum against newborn attacks.

1 Introduction

A blockchain is a list of blocks, each reporting the hash of a previous block, satis-
fying some consistency or consensus rules. Blocks hold transactions, whose exact
nature is not relevant here: they are requests to update the state of a global ab-
stract machine (a ledger of payments as in Bitcoin [15,2]) or a sort of global mem-
ory where data structures are allocated and modified (as in Ethereum [3]). By
using hashes as machine-independent pointers, blockchains can be distributed in
a network of peers. This is desirable since data gets safely duplicated and no spe-
cial peer determines the history by itself. However, peers expand the blockchain,
independently from other peers, hence the blockchain becomes a tree rather
than a list. A notion of chain quality incentivizes peers to append blocks to the
highest-quality chain (the best chain). Therefore, a peer could replace its current
best chain with another, even better chain, a so called history change.

As presented above, peers are free to generate new blocks at maximal speed,
flood the network with new blocks and make the emergence of a best chain
difficult. This is an efficiency and security issue: frequent history changes allow
double spending and network forks. The actual genious of Nakamoto [15] was
to (largely) solve this issue with a consensus rule requiring blocks to answer a
challenge contained in their previous block. Namely, the hash of each block must
be smaller than a difficulty value computed from the previous blocks, directly
bound to the quality of the chain. Therefore, who creates (mines) a new block
runs a proof of work algorithm that rotates (grinds) many alternative values for
a block field (nonce), until the hash of the block is smaller than the difficulty.
This hardens the creation of new blocks, makes it impossible to create blocks at
arbitrary speed and introduces an incentive to expanding the best chain only,
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rather than creating alternative histories by mining on multiple chains. The
difficulty changes overtime, to account for change in the total hashing power of
the network. As shown in [9], this stabilizes the block creation rate and supports
network consistency (all honest peers converge to the same chain, eventually).

Proof of work is a brute-force algorithm, because of the non-correlation prop-
erty of hash functions. Therefore, it consumes energy (as much as a medium-sized
country, for Bitcoin); moreover, it is not egalitarian, being worthwhile only in
countries where electricity is cheap; furthermore, it is more efficient over dedi-
cated, expensive hardware (such as ASICs), against the promise of a democratic
and open network. Therefore, the current trend is towards proof of stake. Its
different flavors share the common idea that mining is limited to a (static or dy-
namic, exclusive or delegatable) set of peers (validators), that stake a collateral
in exchange of mining rights. Many criticize proof of stake for being centralized
and undemocratic (rich becomes richer). Moreover, it suffers from what we call
a start-up issue: as long as the cryptocurrency of a newborn blockchain has still
no value, validators have no incentive to work and be updated. Moreover, val-
idators get punished (slashed) if they misbehave or are offline, which might be
perceived as unfair if that happens because of a connectivity issue or black-out.

A further alternative is proof of space [4,8], where miners must dedicate a
large chunk of disk memory for answering challenges. Its energy consumption is
negligeable and no special hardware helps for mining, currently: the technology is
both cheap and democratic. Moreover, proof of space allows one to capitalize on
unused memory, for free, while proof of work has always an inherent electricity
cost. For fairness, proof of space protocols should only allow to generate answers
of quality directly proportional to the allocated space, or otherwise they are said
to suffer from a time/memory tradeoff. As a drawback, cheap answers introduce
new nothing-at-stake security attacks [16], that are instead anti-economic with
proof of work, since computing power can only be dedicated to one mining task:

Block grinding: Miners might find it profitable (rational) to mine many alter-
native new blocks, each holding different transactions, finally selecting the
block that leads to better answers to subsequent challenges.

Challenge grinding: Miners might find it profitable to provide suboptimal
answers to the current challenge if this leads to subsequent challenges for
which they have much better answers.

Mining on multiple chains: Miners might find it profitable to mine multiple
chains simultaneously (not only the best one).

These attacks increase the risk of double spending and make it convenient to
mine through space and work, thus neutralizing the benefits of proof of space.

Another nothing-at-stake problem, that has not received great attention up
to now, is the newborn attack [24]: a miner that has allocated a large space for
mining for a blockchain network N could use the same space, unchanged, for
mining for a newborn, small network N ′. If the total space used by the peers of
N ′ is initially relatively small, it could be possible for the miner to hijack the
history of N ′, effectively taking its control.
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Most formalizations of proof of space [4,8,18] are based on challenges against
graphs of high pebbling complexity, but no actual blockchain has ever been
built that way: only SpaceMint [16] exists which is not a real blockchain but
a minimal non-maintained prototype of the theoretical consensus protocol only.
Namely, a real graph pebbling blockchain has never been implemented because:
(1) the protocol includes an initialization phase, run for each new prover (miner)
that joins the blockchain, that complicates the protocol itself and requires to
spend cryptocurrency before starting mining; (2) answers to challenges (proofs),
included in blockchain, are relatively large [1]: kilobytes or even megabytes for
proofs created in the initialization phase.

An alternative is Permacoin [13], based on proof of retrievability rather than
graph pebbling, still in the family of the proof of space algorithms [18]. But
neither Permacoin has been implemented: only a prototypical and minimal im-
plementation of only its consensus algorithm exists, discontinued in 2014. Neither
SpaceMint nor Permacoin have been shown to support smart contracts.

Our target of analysis has been Signum [20], instead, since we wanted a fully-
fledged implementation, which gives practical relevance to our work. Signum
(previously Burstcoin) is actually deployed and runs continously since 2014. It
provides smart contracts on top of its consensus algorithms. Signum is not based
on graph pebbling: instead, each miner precomputes a large plot file of hashes,
that is not shared nor stored in blockchain. A peer that wants to mine the
next block derives a challenge from the current blockchain head and challenges
a miner for an answer, called deadline, ie., a small (less than 200 bytes) data
structure, that can be very quickly derived from the plot, with a quality measure
(its waiting time) proportional, on average, to the size of the plot. Signum’s
protocol is attractive since it has no initialization phase (each miner creates its
plot file independently and off-line) and its answers are very small. In principle,
Signum can be mined as described above (proof of space) but also by recomputing
the plot file on-the-fly, at each challenge, without any disk allocation (proof of
work). Because of that, Signum’s mining is sometimes called proof of capacity.
However, the proof of work version of Signum remains theoretical and there is
no evidence that Signum has ever been mined like that. This is because plots
use an expensive hashing algorithm (shabal256) and are very big, so that their
recomputation takes longer than the block creation rate. Specialized hardware
might change the situation in the future but, from its inception in 2014 to the
present day, Signum seems to have been only mined with proof of space.

The actual drawback of Signum is that the underlying theory has never been
formalized nor defined up to now. Moroever, [16] warned about a potential block
grinding attack. Without a formalization, it is impossible to judge if it is real.

Therefore, this paper provides the following contributions about Signum:

– a formalization of its algorithm, recostructed and interpolated from a very
informal and partial description [22] and its poorly commented code [21];

– a proof that block grinding attacks are impossible, against a previous hint [16];
– a proof that challenge grinding attacks are limited;
– a new protection against newborn attacks.
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notation meaning in [22]
▷◁ concatenation of sequences

#scoops number of scoops contained in a nonce 4096

hdeadline hashing function for computing nonces, plots and deadlines shabal256
hgeneration hashing function for computing the generations of challenges shabal256
hblock hashing function for computing the hash of the blocks sha256
κ threshold to the number of bytes fed to hdeadline in Alg. 1 4096

beat target block creation time interval (ms) 240000

σgenesis generation signature for the genesis block
τnow current time (ms from Unix epoch)

oblivion acceleration reaction to changes of mining power (0 to 1)

Table 1. Notations and contextual information used in our formalization and
their specific instantiations used in [22], when available.

These results are relevant since they show that Signum’s consensus is actually
supported by a formal theory and protected from a large class of attacks.

The rest of this paper is organized as follows. Sec. 2 formalizes the structure
of the plot files. Sec. 3 defines the challenges that the consensus algorithm must
solve, and their answers (deadlines). Sec. 4 presents Signum’s mining algorithm.
Sec. 5 studies grinding attacks in Signum and proposes a new solution against
newborn attacks. Sec. 6 presents related work. Sec. 7 concludes. Proofs are re-
ported in appendix. Tab. 1 collects notations used throughout the paper. It also
reports specific choices made in [22] (rightmost column), but this paper remains
parametric wrt. them. For instance, for genericity, our formalization uses three
hashing functions, that might actually coincide.

Acknowledgments: Removed for anonymization.

2 Nonces and Plots

This section formalizes the notions of nonce and plot and their algorithmic con-
struction. Namely, Signum requires miners to hold one or more plots (sets of
nonces) on disk. Their initialization is performed only once and offline, hence it
is not part of the mining protocol.

The following definitions are used to deal with bytes and hashing.

Definition 1 (Concatenation operator ▷◁). Sequences (for instance, of bytes)
are concatenated by ▷◁. The same ▷◁ is used to concatenate a sequence to an el-
ement or an element to a sequence.

The following byte representation of natural numbers is used in [22]. It is the
standard representation in most computers nowadays.

Definition 2 (nat2be and be2nat). The operators nat2be and be2nat trans-
form natural numbers into their big-endian byte representation, and vice versa.
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We recall that the big-endian representation of a natural number is its binary
representation, split in bytes, with the most significant byte placed first.

Definition 3 (Hashing function). A hashing function h of size > 0 is a total
map h : byte∗ → bytesize , where byte∗ is a sequence of bytes, of arbitrary length,
and bytesize is a sequence of size bytes, called a hash for h. If h is a hashing
function, then size(h) is its size.

A scoop is a pair of hashes. A nonce is a natural progressive number p, and
a list of #scoops > 0 scoops. Their definitions are parametric wrt. a hashing
function hdeadline used for their creation.

Definition 4 (Scoop, Nonce). The sets of scoops and nonces are

Scoops =
{
⟨h1, h2⟩

∣∣h1, h2 are hashes for hdeadline

}
,

Nonces =
{
⟨p, scoops⟩

∣∣p ∈ N and scoops ∈ Scoops#scoops
}
.

In the above definition, angular brackets stand for tuples (in this specific case,
they stand for pairs). When definitions are given in terms of tuples, they silently
introduce selection functions for the tuple elements. For instance, if nonce ∈
Nonces, then nonce.p and nonce.scoops are its elements.

A prolog is the identifier of the creator of nonces and plots (for instance, its
public key). For now, it is just a sequence of bytes. Sec. 5 will give structure to
prologs and see how they can be useful.

Definition 5 (Prolog). The set of prologs is Prologs = {π | π ∈ bytes∗}.

Algorithm 1 constructs a nonce, given its progressive number and a prolog. It
uses a constant κ > 0 (Tab. 1) to limit its computational cost, to avoid hashing
very large chunks of data. This algorithm derives a sequence of hashes (steps 1
and 2) and constructs a final hash from all of them (step 3) that uses to modify
the original sequence of hashes (step 4). Then it shuffles the sequence (step 5),
which intuitively guarantees that, in order to compute a given scoop of the nonce
(ie. a pair of consecutive hashes), the algorithm must be thoroughly executed.

Algorithm 1 (nonce(p, π)) Given p ∈ N and π ∈ Prologs, we define

nonce(p, π) = ⟨p, ⟨h0, h1⟩ ▷◁ · · · ▷◁⟨h2·#scoops−2, h2·#scoops−1⟩⟩ ∈ Nonces,

where the hashes h0, . . . , h2·#scoops−1 are constructed as follows1.

1. Let seed = π ▷◁nat2be(p).
2. For each i from 2 ·#scoops − 1 to 0, let2

hi = hdeadline

(
first κ bytes of

((
▷◁

i<j<2·#scoops
hj

)
▷◁ seed

))
.

1 Step. 5 and the threshold κ have been added after the publication of [16], in response
to some of their criticisms. See Sec. 5.

2 In [22], it is said to take the last κ bytes, that would be meaningless since then the
lowest hi’s would coincide. An inspection of their code shows that they actually take
the first κ bytes. They probably use last here in the sense of more recently computed.
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3. Let hfinal = hdeadline ((▷◁0≤j<2·#scoops hj) ▷◁ seed) .
4. For each i from 0 to 2 ·#scoops − 1, reassign hi to hi ⊕ hfinal .
5. For each odd i from 1 to 2 ·#scoops − 1, swap hi with h2·#scoops−i.

A plot is a set of nonces constructed with Alg. 1, for a finite non-empty set of
progressive numbers P and for a given prolog π, recorded in the plot.

Definition 6 (Plot). The set of plots is defined as

Plots =

{
⟨π,nonces⟩

∣∣∣∣π ∈ Prologs, ∅ ̸= P ⊂ N is finite
and nonces = {nonce(p, π) | p ∈ P }

}
.

The computations of nonce(p, π) and nonce(p′, π), for p ̸= p′, are completely
independent. Therefore, Def. 6 implies that the construction of a plot can be
optimized on multicore hardware.

3 Challenges and Deadlines

A challenge specifies a puzzle that must be solved in order to mine a new block.
In Signum, challenges become a query that can be asked to each nonce of a plot,
resulting in an answer called deadline.

Definition 7 (Challenge). The set of challenges is

Challenges =

{
⟨scoopNumber , σ⟩

∣∣∣∣0 ≤ scoopNumber < #scoops
and σ is a hash for hgeneration

}
.

The σ component of a challenge is said to be its generation signature. In the
following, generation signature will be used as a synonym of hash for hgeneration .

Given a challenge and a nonce, the latter has a value that specifies how well the
nonce answers the challenge.

Definition 8 (value(nonce, challenge)). Let nonce ∈ Nonces and challenge ∈
Challenges. The value of nonce wrt. challenge, ie., value(nonce, challenge), is
hdeadline(nonce.scoops[challenge.scoopNumber ] ▷◁ challenge.σ).

The answer to a challenge could actually be a nonce n, whose quality is its value.
But nonces are quite big (around 262 kbytes under the assumptions in the right-
most column of Tab. 1). Since answers are stored in blockchain, [22] introduces
deadlines, a much smaller representation of the value of n, carrying the informa-
tion needed to reconstruct n and verify that it actually answers the challenge.

Definition 9 (Deadline). The set of deadlines is

Deadlines =

⟨p, π, value, challenge⟩

∣∣∣∣∣∣
π ∈ Prologs, p ∈ N,
value is a hash for hdeadline

and challenge ∈ Challenges

 .

Deadlines are totally ordered by increasing value.
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Intuitively, the value of a deadline expresses how many milliseconds must be
waited until the deadline expires and a new block can be mined. However, if
the mining power of the network increases, the minimal value of the deadlines
generated by the network tends to decrease and the block creation rate would
not be fixed to beat (Tab. 1), on average. This explains why the deadlines’ value
is modulated wrt. an acceleration3, which is the inverse of Bitcoin’s difficulty.

Definition 10 (Deadline’s waiting time). Given δ ∈ Deadlines and an ac-
celeration α ∈ N such that α > 0, the waiting time for δ wrt. α is4

waitingTime(δ, α) =
be2nat(δ.value)

α
.

Def. 11 finally shows how a nonce answers a challenge with a deadline.

Definition 11 (δ(nonce, π, challenge)). Given nonce ∈ Nonces, π ∈ Prologs
and challenge ∈ Challenges, the deadline computed from nonce for π and challenge
is δ(nonce, π, challenge) = ⟨nonce.p, π, value(nonce, challenge), challenge⟩.

Def. 11 extends to plots. Remember that plots are non-empty (Def. 6) and embed
the identifier of their creator π; and that deadlines are ordered by their value.

Definition 12 (deadline(plot , challenge)). Given plot ∈ Plots and challenge ∈
Challenges, the deadline computed from plot for challenge is5

δ(plot , challenge) = min
nonce∈plot.nonces

δ(nonce, plot .π, challenge).

A deadline is valid when the nonce built from its progressive and prolog has the
same value as the deadline wrt. its challenge.

Definition 13 (Deadline’s validity). Given δ ∈ Deadlines, it is valid if and
only if δ.value = value(nonce(δ.p, δ.π), δ.challenge).

4 Blockchain Construction

The blocks of the blockchain contain information used for consensus, called trunk
by borrowing this terminology from [6]; other information such as the previous
block hash; and extra information that is irrelevant here, such as a list of trans-
actions, that are not formalized below since they are not used by Signum’s
consensus. Blocks can be genesis and non-genesis. Both contain their time of
creation and their acceleration. Genesis blocks have no trunk nor parent; their
height is implicitly 0. Challenges c are generated in sequence: there is an ini-
tial constant challenge for the genesis block, while the challenge of non-genesis
3 In [22] the term base target is used for it, but we think that acceleration is clearer.
4 In [22], the divisor is actually 2size(hdeadline)−8 ·α, to avoid using very large values for
α. This is theoretically irrelevant and we prefer our simpler presentation.

5 If more nonces of the plot lead to deadlines with the same minimal value, we assume
that Def. 12 chooses one, according to some policy that is irrelevant here.
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blocks b is generated from their trunk. In particular, c is not computed from the
transactions in b, in order to avoid block-grinding attacks (Sec. 5). A deadline
that answers c is recorded in the trunk of the sons of b.

Definition 14 (Trunk, Block). The sets of trunks and blocks are

Trunks = {⟨height , δ⟩ | height ∈ N and δ ∈ Deadlines} ,
GenesisBlocks = {⟨τ, α⟩ | τ ∈ N, α ∈ N and α > 0} ,

NonGenesisBlocks =


〈 τ, α, power ,
weightedBeat , trunk ,
previousBlockHash

〉∣∣∣∣∣∣∣∣∣∣
τ, α ∈ N, α > 0,
power ,weightedBeat ∈ N,
trunk ∈ Trunks,
previousBlockHash is a

hash for hblock

 ,

Blocks = GenesisBlocks ∪ NonGenesisBlocks.

If b is a block, then b.τ is its creation time (milliseconds from the Unix epoch)
and b.α is its acceleration. If b is a non-genesis block, then b.power expresses
how much space has been used to build the path to b, starting from the gen-
esis block; it will be used to select the best chain for mining b’s sons. The
value of b.weightedBeat is the average block creation rate in the path to b; it
weighs the last blocks more. It will be compared to beat (Tab. 1) to under-
stand if the acceleration must be increased or decreased in b’s sons. The value of
b.previousBlockHash is the hash of the previous block in the path to b. If b is a
genesis block, we abuse notation and assume that b.power = b.weightedBeat = 0.

Definition 15 (Block’s height). Let b ∈ Blocks. The height of b, written
height(b), is 0 if b ∈ GenesisBlocks, and b.trunk .height if b ∈ NonGenesisBlocks.

Def. 16 shows how the first challenge is defined, for genesis blocks. It is a constant
that only depends on contextual values (Table 1).

Definition 16 (initialChallenge). The initial challenge is6initialChallenge =
⟨0, σgenesis⟩, where σgenesis is a constant generation signature used for the genesis
of the blockchain (see Table 1).

Def. 17 shows how a challenge is derived from the trunk of a non-genesis block.

Definition 17 (challengenext(trunk)). Let trunk ∈ Trunks. The next challenge
for trunk is challengenext(trunk) = ⟨be2nat(hgeneration(σ ▷◁nat2be(trunk .height+
1))) mod #scoops, σ⟩, where σ = hgeneration(trunk .δ.challenge.σ ▷◁ trunk .δ.π).

The construction of the generation signature σ for the next challenge, in Def. 17,
has puzzled us for some time, since [22] appends a previous block generator
to the previous block’s generation signature trunk .δ.challenge.σ. That concept,
however, is defined nowhere. We had to dive in the source code of Signum to
6 In [22] the scoop number is derived from σgenesis ; we simplify it to 0, without loss of

generality.
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understand that it is actually an identifier (more concretely, the public key) of
the creator of the deadline for the previous block (see https://github.com/
signum-network/signum-node/blob/main/src/brs/GeneratorImpl.java, in
the constructor of GeneratorStateImpl). Our prolog of the previous deadline
generalizes that information, hence Def. 17 appends trunk .δ.π to define σ.

Later, it will be handy to determine the next challenge for a block. Note that
it only uses the trunk inside the block.

Definition 18. Let b ∈ Blocks. Its next challenge is

challengenext(b) =

{
initialChallenge if b ∈ GenesisBlocks

challengenext(b.trunk) if b ∈ NonGenesisBlocks.

Def. 19 shows how the information inside a block is used to construct that
inside its sons. It is actually our proposal, since there is no information in [22]
about this. The computation of the next weighted beat gives more or less weight
to the previous weighted beat, depending on a constant oblivion (0 ≤ oblivion ≤
1) that expresses how quickly the acceleration reacts to changes in mining power.
The computation of the next power uses the same formula as Bitcoin [25,9],
adapted to our context: the ratio between the maximal (hence worse) deadline’s
value 28·size(hdeadline) and the actual deadline’s value expresses how much space
has been used to compute the deadline.

Definition 19 (Next functions). Let b ∈ Blocks and δ ∈ Deadlines. We define

τnext(b, δ) = b.τ + waitingTime(δ, b.α),

weightedBeatnext(b, δ) =
waitingTime(δ, b.α) · oblivion

+b.weightedBeat · (1− oblivion)
,

αnext(b, δ) =
b.α · weightedBeatnext(b, δ)

beat
,

powernext(b, δ) = b.power +
28·size(hdeadline)

be2nat(δ.value) + 1
.

Def. 20 shows how a next block is constructed, once its deadline has been chosen.

Definition 20 (Next block). Let b ∈ Blocks and δ ∈ Deadlines. We define
blocknext(b, δ) ∈ NonGenesisBlocks as

blocknext(b, δ) =

〈
τnext(b, δ), αnext(b, δ), powernext(b, δ),

weightedBeatnext(b, δ), ⟨height(b) + 1, δ⟩, hblock (b)

〉
,

where hblock (b) is the application of hblock to the byte representation of b.

A blockchain is a set of blocks, linked through their previousBlockHash field.
It must contain exactly one genesis block; there is no hash collision among its
blocks; and all its blocks must satisfy the consensus rules.

https://github.com/signum-network/signum-node/blob/main/src/brs/GeneratorImpl.java
https://github.com/signum-network/signum-node/blob/main/src/brs/GeneratorImpl.java
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Definition 21 (Blockchain, Consensus). A blockchain is a set B ⊆ Blocks
such that:

1. there is exactly one b ∈ B ∩ GenesisBlocks, written as genesis(B);
2. for each hash h of hblock , there is at most one b ∈ B such that hblock (b) = h,

written as block(B, h);
3. for each b ∈ B, the predicate consensus(B, b) holds, where

– if b ∈ GenesisBlocks, then consensus(B, b) is just the consensus rule:
(a) b is not created in the future: b.τ ≤ τnow ;

– if b ∈ NonGenesisBlocks, then consensus(B, b) is the logical conjunction
of all the following consensus rules:
(a) b is not created in the future: b.τ ≤ τnow ;
(b) the deadline of b (that is, b.trunk .δ) is valid (Def. 13);
(c) there are no dangling pointers: p = block(B, b.previousBlockHash)

exists;
(d) b’s deadline answers the challenge of p (Def. 18): challengenext(p) =

b.trunk .δ.challenge
(e) b is p’s next block wrt. b’s deadline (Def. 20): b=blocknext(p, b.trunk .δ).

The above consensus rules, reconstructed and interpolated from [22,21], do not
constrain the prologs of the deadlines: each block can have an arbitrary prolog.
Sec. 5 will show why it is useful to restrain prologs with extra consensus rules.

Definition 22 (Blockchain network). A blockchain network is a network
of peers (computers), each connected to the other peers, each holding its own
vision of the blockchain, all for the same genesis block. Each peer holds a plot
(Def. 6) on disk, starts with a blockchain that only holds the genesis block and
runs, concurrently, the block mining algorithm and the block mined algorithm.

Def. 22 simplifies the picture very much: it assumes that peers are fully con-
nected, never disconnect and never need to synchronize. In practice, peers do
not hold plots but rely on (one or more) external services (miners) that hold
the plots. The goal here is to keep the picture as simple as possible and concen-
trate on the properties of Signum’s consensus only: Def. 22 does not pretend to
describe a real blockchain implementation in detail.

Def. 22 defines the block mining algorithm. It is an infinite loop that looks
for the most powerful block p in blockchain (step 1), derives a challenge c from
p (step 2), uses a plot to compute a best deadline δ for c (step 3), computes the
next block b′ for δ (step 4) and waits for δ to expire (step 5). Then it adds b′ in
blockchain (step 6), whispers b′ to all peers (step 7) and restarts.

Algorithm 2 (Block mining) The block mining algorithm of a peer P , hold-
ing blockchain B, is the following infinite loop:

1. identify a most powerful7 block p in B;
2. compute c = challengenext(p) (Def. 18);
7 In theory, more most powerful blocks might exist in blockchain, although this is

highly unlikely; in that case, step 1 will choose any of them.
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3. compute δ′ = δ(plot , c) (Def. 12), where plot if the plot of P ;
4. compute b′ = blocknext(p, δ

′) (Def. 20);
5. wait until b′.τ ≤ τnow ;
6. add b′ to B;
7. whisper b′ to the peers connected to P ;
8. go back to step 1.

The block mined algorithm receives a block whispered from some connected peer
(step 1), checks its validity (step 2) and adds it to the blockchain.

Algorithm 3 (Block mined) The block mined algorithm of a peer P , holding
blockchain B, is the following infinite loop:

1. wait for a block b whispered from some connected peer P ′;
2. if B ∪ {b} is a blockchain, add b to B;
3. go back to step 1.

In practice, step 2 of Alg. 3 could only allow the addition of b if it looks pow-
erful enough, in order to avoid keeping useless blocks. This is not relevant here.
Moreover, if the whispered block b at step 2 of Alg. 3 is more powerful than b′

at step 5 of Alg. 2, a rational peer would interrupt waiting at step 5 of Alg. 2,
discard b′ and restart Alg. 2 from step 1, since the whispered b is better than
the block b′ that it is being mined, hence it is wiser to stop waiting and start
mining on top of b. These are optimizations and are not considered here.

Peers check the validity of blocks coming from outside (step 2 of Alg. 3), since
they do not trust their connected peers. Instead, they do not check the validity
of the blocks that they mine themselves (step 6 of Alg. 2), since they are valid
by construction. Namely, Prop. 1 guarantees that B remains a blockchain in
every peer. The hypothesis on no hash collision is standard. Namely, all existing
blockchains make that hypothesis and they would all collapse otherwise, because
they all identify blocks by their hash.

Proposition 1. If no hash collision occurs at step 6 of Alg. 2, then the set B
of blocks in each peer is a blockchain.

5 Prolog Structure, Protection against Attacks

This section uses the formalization of the previous sections to extend the frame-
work in [22] and understand if nothing-at-stake attacks might work for Signum.

The peers of Def. 22 have two functions: to find new deadlines and to package
new blocks with such deadlines. In practice, two machines perform each of them:
one (the actual miner) finds deadlines by using plots: it must have a large disk
space; the other (the actual peer) receives deadlines, packages and whispers new
blocks: it must have a good network connection. Such machines will work for a
blockchain network with a given chain identifier [2]. Therefore, we propose to
use, as prologs, the byte representation of the following triple:

⟨chainIdentifier , publicKeyOfPeer , publicKeyOfMiner⟩
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(in [22], prologs are just publicKeyOfMiner). Moreover, we add two new con-
sensus rules to Def. 21. Informally, one requires that the chain identifier of the
blockchain is b.trunk .δ.π.chainIdentifier ; and the other requires that the signa-
ture of b is verified with b.trunk .δ.π.publicKeyOfPeer . This has many advantages:

– the public keys of peer and miner can be used to remunerate them for their
contribution, in an application-specific way;

– the creator of a plot must specify the public key of the peer: hence that plot
can only be used to create deadlines for that given peer and miners become
dedicated to that given peer, instead of working, with the same plot, for
many peers. This creates a sort of miner fidelization and allows peers to
compete by offering different remuneration schemes to miners;

– the creator of a plot must specify the chain identifier of the blockchain. There-
fore, it becomes impossible to use the same plot for mining two blockchain
networks at the same time. This protects against newborn attacks.

Note that this structure for the prologs entails that deadlines are around 170
bytes (assuming hashes, signatures and chain identifier to be 32 bytes each).

In [16], Burstcoin was criticized because the validation of a deadline (Def. 13)
requires to run Alg. 1 that, they say, requires hashing 8 · 106 · 32 = 256000000
bytes. It must be stated that such hashing can actually be computed in a few
milliseconds nowadays, with a minimal energy cost. Moreover, it is largely dom-
inated by that for verifying the transactions in a block, in particular for Signum
that allows smart contracts. Therefore, this time for deadline validation seems
largely acceptable to us. In any case, step 2 of Alg. 1 currently uses a thresh-
old κ, that was possibly missing when [16] was written. Considering κ and the
specific values and hashing used in [22] (rightmost column of Tab. 1), step 2
hashes at most κ bytes and is iterated 2 · #scoops times, that is, it hashes at
most 33554432 bytes. Step 3 hashes 32 ·2 ·4096 bytes plus the size of seed , which
is reasonably at most 200 bytes. That is, it hashes 262344 bytes. In total, Alg. 1
hashes 33816776 bytes, around 8 times less than what was reported in [16].

In Appendix B of [16], a potential block-grinding attack was hinted for Burst-
coin, since, in [22], the next challenge of a previous block used its undefined previ-
ous block generator : “this seems possible to be grinded, by trying different sets of
transactions to include in a block” [16]. As discussed just after our Def. 17, that
notion is just the prolog trunk .δ.π of the deadline of the trunk in the previous
block. Consequently, it cannot be grinded. That is, Signum is protected against
block-grinding attacks. But we sympathize with the authors of [16]: without a
formalization, it was impossible to exclude that attack.

We furthermore observe that Signum has some protection against challenge-
grinding attacks. The challenge for the a block is actually uniquely determined
by the trunk of its previous block (rule (d) of Def. 21 and Def. 18) but a peer
might select suboptimal deadlines at step 3 of Alg. 2 (ie., not the minimal one
of Def. 12), hoping that such a sacrifice will lead to subsequent challenges for
which it can find very good deadlines. But Prop. 2 shows that that choice does
not pay off: deadlines do not affect the sequence of challenges, only the plots do.
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Proposition 2. Let B be a blockchain, plot ∈ Plots, b0, . . . , bn and b′0, . . . , b
′
n be

two sequences of blocks in B, rooted at the same b0 = b′0, mined by using plot
only (possibly with suboptimal choices of the deadlines), that is,

bi.trunk .δ = δ(noncei, plot .π, challengenext(bi−1))

b′i.trunk .δ = δ(nonce ′i, plot .π, challengenext(b
′
i−1))

for suitable noncei,nonce
′
i ∈ plot .nonces, for every 1 ≤ i ≤ n. Then it holds

challengenext(bj) = challengenext(b
′
j) for every 0 ≤ j ≤ n.

Intuitively, the sequence of challenges depends only on the sequence of prologs
used for mining, that is always the same by using a given plot. Therefore, a
challenge grinding attack in Signum would require one to use more plots, with
prologs with different keys, all in control of the peer, and grind among the plots.
However, the number of plots is limited by the space allocated to the algorithm
and the same set of plots would end up being used at each mining step, since
they are too expensive to generate on the fly during grinding. This highly limits
the benefits of grinding. For additional protection, it is always possible to use
one of the techniques presented in [16] (see Sec. 6).

Signum does not seem to have any protection against mining on different
chains instead. The only possibility here seems to use the penalty transactions
used in [16] and challenges that are not built from the trunk of the previous
block but from that of a predecessor block deeper in the chain (see Sec. 6).

Appendix B of [16] shows that the original definition of Burstcoin had a
time/memory tradeoff: it was possible to store only each hfinal instead of each
full nonce (see step. 3 of Alg. 1) and reconstruct (some) scoops on demand. The
resulting (mining power)/(space used) ratio was proportionally higher than by
storing the full nonces, “at the price of having to compute a modest number of
extra hashes” [16]. We agree with the attack but not with the modest number :
the discussion in [16] confuses plots with nonces and does not recognize that that
modest number must be computed for all nonces in the plot, which are easily
too many, considering the cost of the shabal256 hashing algorithm (Tab. 1).
In any case, the developers of Signum have modified Alg. 1 with the addition
of step 5, in order to cope with this time/memory tradeoff. That extra step
requires one to compute all hi’s in order to compute the scoops. Therefore, this
specific time/memory tradeoff does not occur anymore. Of course, proving that
the addition of step 5 is enough to ban all time/memory tradeoffs remains an
open question, a daunting task that goes well beyond the scope of this paper.

6 Related Work

Proof of work was originally meant as protection against email spam [7]: senders
must perform some work to have their emails accepted by recipients. Ethereum
started with proof of work [3] and later moved to proof of stake. The latter can
be seen as a Byzantine consensus algorithm, as pioneered by Tendermint [12].
Most current blockchains use some form of proof of stake nowadays.
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Traditional properties of consensus algorithms are consistency (all honest
peers eventually converge to the same blockchain), liveness (a transaction sub-
mitted to the network gets included in blockchain after a reasonable time) and
order-fairness (peers include transactions in blockchain in their arrival order).
This paper does not discuss them because Signum’s consensus behaves exactly as
Bitcoin’s proof of work wrt. these properties. Namely, step 1 of Alg. 2 guarantees
that honest peers select the same chain (if whispering is working); while liveness
and order-fairness hold for honest peers but not if a dishonest peer holds a large
part of the total mining power (as in the 51% attack). Note that order-fairness
is more easily lost in other consensus algorithms, such as Byzantine consensus
algorithms, where validators can decide the history independently from their
mining power. Solutions, in that context, are reported in [11].

The theory of proof of space was independently developed in two seminal
papers [4,8], both based on directed acyclic graphs (DAGs) of high pebbling
complexity. Pebbling, here, is a directed hash decoration of the nodes of the DAG,
as in a Merkle tree. A prover must hold such a (big) DAG and its pebbling on
disk, in order to answer, efficiently, challenges with proofs that should convince a
verifier that the prover is actually holding data on disk. While [8] requires space
to remain allocated between challenges (proof of persistent space), [4] requires
one to allocate space only when answering challenges (proof of transient space or
proof of secure erasure, as [8] calls it). Both solutions have an initialization phase,
when the verifier performs a deep challenge of the prover and stores the resulting
(big) proof in blockchain, followed by an execution phase, when the verifier
challenges the prover for each new block. Also [18] uses pebbling for stacked
expander graphs, to get simpler, more efficient, provably space-hard solutions. It
works for both proof of transient space and proof of persistent space. It includes
a nice review on proof of space and related techniques: memory-hard functions,
proof of secure erasure, provable data possession, proof of retrievability.

Time/memory tradeoffs are studied in [19]. They occur if a prover can store
only a part of the data on disk, with a less than proportional degradation of
mining power. A good proof of space algorithm makes it difficult to recover the
missing part when answering challenges. For graph pebbling, the initialization
phase prevents most cheating (that is, keeping incomplete data on disk). In [19],
the size of the portion of the file not kept on disk is related to the consequent
time complexity degradation for computing the missing part. Ideally, the full file
and pebbling must be kept on disk for having no time complexity explosion, but
they show that this is not the case in existing solutions and provide sufficient
conditions for the initialization phase, that guarantee the ideal result.

The use of graph pebbling seems to dominate the literature on proof of space,
but [1] proposes an alternative theory, that supports the Chia network [6,5]: a
proof of sequential work on top of a proof of space, based on challenges about
the inversion of a random function, for which time/memory tradeoffs have been
solved. However, this is not a pure proof of space. Another alternative is the
proof of retrievability in [10]: the verifier sends, initially, a large file to the prover
(miner) that later challenges, repeatedly, to see if it still keeps the file on disk.
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Its apparent simplicity is jeopardized by the difficulty of sharing big files among
all (present and future) peers, for all (past, present and future) miners.

We are only aware of one implementation of graph-pebbling proof of space:
SpaceMint [16], previously Spacecoin [17]. It is not a blockchain but a discontin-
ued prototype of only the consensus protocol of [8]. Nevertheless, [16] exposes
problems and solutions related to the actual game theory and implementation of
proof of space. For instance, it uses the verifier’s public key as an input parame-
ter for pebbling, to discourage the use of mining pools, often seen negatively [14].
Furthermore, it provides solutions for nothing-at-stake problems. Against block
grinding, it makes challenges independent from the transactions in the blocks, by
splitting the blockchain in a proofs blockchain and in a transactions blockchain:
only the first is used for mining, and the two are connected with the miner’s
signature. Against challenge grinding, it lets past blocks influence the quality of
short sequences of future blocks only. A similar but more drastic solution in [6]
uses the same challenge for several consecutive blocks, since it is unlikely that it
will be good for all of them. Against mining on multiple chains, [16] proposes to
spot such behavior and impose a penalty transaction to the culprit. Experiments
in [16] include an estimation of the size of Spacemint’s proofs: in the initialization
phase, they are between two and three megabytes; in the execution phase, they
can be optimized to around 100 kilobytes. Proofs must be persistently stored
in blockchain (for each new miner, in the first case, and for each new block, in
the second), which makes the blockchain’s size much larger than in Bitcoin, and
requires miners to hold cryptocurrency even before starting mining.

Signum [20], previously Burstcoin, has been launched in 2014, with possibly
the first ever language for smart contracts, and is still active. Appendix B of [16]
reports a formalization of an old version of Alg. 1.

Newborn attacks are considered in [24]. Their solution is to split the space
for mining on many chains, with an incentive to allocate, for each chain, a space
proportional to the market value of that chain.

7 Conclusion

In the context of proof of space consensus, Signum’s advantage is its simplicity,
the small size of its proofs (deadlines, around 200 bytes) and the absence of an
initialization phase and transactions. Moreover, it is the only fully implemented
and deployed solution and supports smart contracts. Its drawback is that it
is theoretically possible to mine new blocks in a proof of work style, although
this is not been observed in practice up to now. Our formalization of Signum’s
consensus is valuable because it sheds light on a blockchain network that runs
since ten years but was missing any formal definition. Moreover, it allowed us
to understand that Signum is free from block-grinding attacks and is largely
protected from challenge-grinding attacks.
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A Proofs

Proof of Prop. 1 at page 11
Let us prove it by induction on the number of blocks added to B in Algs. 2
and 3. The thesis is true when the peer starts, by Def. 22. Alg. 3 keeps B as
a blockchain, since it explicitly checks it (step 2 of Alg. 3). It remains to show
that, if B is a blockchain at the beginning of step 6 of Alg. 2, then B ∪ {b′}
is a blockchain at its end. By Def. 20, it is b′ ∈ NonGenesisBlocks. Therefore,
property 1 of Def. 21 remains true. By the assumption on no hash collision,
property 2 remains true. It remains to prove that property 3 remains true as
well. Let b ∈ B ∪ {b′}.
– If b ∈ GenesisBlocks, it is b ̸= b′ and then b ∈ B; since τnow cannot decrease

with the time, by inductive hypothesis the property b.τ ≤ τnow was true at
the start of step 6 of Alg. 2 and is still true at its end.

– If b ∈ NonGenesisBlocks and b ∈ B, by inductive hypothesis all consensus
rules held when b was added to B and they must still hold now, since τnow
only increases with the time and since no block is ever removed from B (nor
replaced in B, since there is no hash collision).

– If b ∈ NonGenesisBlocks and b ̸∈ B, it must be b = b′. Let us prove that each
consensus rule in Def. 21 holds.
(a) This rule holds by step 5 of Alg. 2 and by the fact that τnow cannot

decrease from step 5 to step 6;
(b) It is

b.trunk .δ = b′.trunk .δ

(step 4 of Alg. 2 and Def. 20) = δ′

(step 3 of Alg. 2) = δ(plot , c)

(Def. 12) = δ(nonce, plot .π, c)

for some nonce ∈ plot .nonces. The deadline ∆ = δ(nonce, plot .π, c) is
valid (Def. 13) since, by Def. 11:

∆.value = value(nonce, c)

= value(nonce, ∆.challenge)

(Def. 6) = value(nonce(nonce.p, plot .π), ∆.challenge)

(Def. 11) = value(nonce(∆.p,∆.π), ∆.challenge).

(c) It is

b.previousBlockHash = b′.previousBlockHash

(step. 4 of Alg. 2) = blocknext(p, δ
′).previousBlockHash

= hblock (p),

where p is the most powerful block in B (by step. 1 of Alg. 2). There-
fore, block(B, b.previousBlockHash) exists and coincides with the block
p selected at step 1 of Alg. 2. This fact is used in the subsequent points
of this proof.
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(d) By step 2 of Alg. 2, it is

challengenext(p) = c

(Defs. 12 and 11) = δ(plot , c).challenge

(step 3 of Alg. 2) = δ′.challenge

(step 4 of Alg. 2 and Def. 20) = b′.trunk .δ.challenge

= b.trunk .δ.challenge.

(e) It is

b = b′

(step. 4 of Alg. 2) = blocknext(p, δ
′)

(Def. 20) = blocknext(p, b.trunk .δ).

⊓⊔

Proof of Prop. 2 at page 13

Let us proceed by induction on n. If n = 0, the thesis holds since b0 = b′0. Let n >
0 and assume that the thesis holds for n−1. Let us prove it for n. By inductive hy-
pothesis, it is enough to prove that challengenext(bn) = challengenext(b

′
n). Since

n > 0, by consensus rule (e) of Def. 21 and by Def. 20, it is bn ∈ NonGenesisBlocks.
Therefore, by Def. 18, it is

challengenext(bn) = challengenext(bn.trunk)

(Def. 17) = ⟨be2nat(hgeneration(σ ▷◁nat2be(bn.trunk .height + 1)))

mod #scoops, σ⟩
consensus
rule (e)

of Def. 21,
and Def. 20

 = ⟨be2nat(hgeneration(σ ▷◁nat2be(b0.trunk .height + n+ 1)))

mod #scoops, σ⟩

and similarly

challengenext(b
′
n) = ⟨be2nat(hgeneration(σ

′ ▷◁nat2be(b0.trunk .height + n+ 1)))

mod #scoops, σ′⟩
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where

σ = hgeneration(bn.trunk .δ.challenge.σ ▷◁ bn.trunk .δ.π) bn has been mined
by using plot ,
and Def. 11

 = hgeneration(bn.trunk .δ.challenge.σ ▷◁ plot .π)

(
consensus rule (d)

of Def. 21

)
= hgeneration(challengenext(bn−1).σ ▷◁ plot .π)(

inductive
hypothesis

)
= hgeneration(challengenext(b

′
n−1).σ ▷◁ plot .π)(

consensus rule (d)
of Def. 21

)
= hgeneration(b

′
n.trunk .δ.challenge.σ ▷◁ plot .π) b′n has been mined

by using plot ,
and Def. 11

 = hgeneration(b
′
n.trunk .δ.challenge.σ ▷◁ b′n.trunk .δ.π)

= σ′.

It follows that challengenext(bn) = challengenext(b
′
n). ⊓⊔
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