A quantitative notion of economic security for
smart contract compositions

No Author Given

No Institute Given

Abstract. Decentralized applications are often composed of multiple in-
terconnected smart contracts. This is especially evident in DeFi, where
protocols are heavily intertwined and rely on a variety of basic building
blocks such as tokens, decentralized exchanges and lending protocols. A
crucial security challenge in this setting arises when adversaries target
individual components to cause systemic economic losses. Existing se-
curity notions focus on determining the existence of these attacks, but
fail to quantify the effect of manipulating an individual component on
the overall economic security of the system. In this paper, we introduce
a quantitative security notion that measures how an attack on a single
component can lead to economic losses of the overall composition. We
study the fundamental properties of this notion and apply it to assess
the security of notable smart contract compositions. In particular, we
analyse under-collateralized loan attacks in systems composed of lending
protocols and decentralized exchanges.

1 Introduction

Developing decentralized applications nowadays involves suitably designing, as-
sembling and customizing a multitude of smart contracts, resulting in complex
interactions and dependencies. In particular, recent DeFi applications are highly
interconnected compositions of smart contracts of various kinds, including to-
kens, derivatives, decentralized exchanges (DEX), and lending protocols [13,14].

This complexity poses significant security risks, as adversaries targeting one
of the components may compromise the security of the overall application. Note
that, for this to happen, the attacked component does not even need to have a
proper vulnerability to exploit. For example, in an application composed of a
lending protocol and a DEX serving as a price oracle, adversaries could target the
DEX in order to artificially inflate the price of an asset that they have previously
deposited to the lending pool. This manipulation would allow adversaries to
borrow other assets with an insufficient collateral, circumventing the intended
economic mechanism of the lending protocol [11,19,5,18,1].

The first step to address these risks is to formally define when a system of
smart contracts is secure. In recent years, a few security notions have emerged,
starting from Babel, Daian, Kelkar and Juels’ “Clockwork finance” paper [3].
Broadly, these definitions try to characterise the economic security of smart
contract systems based on the extent of economic damage that adversaries can



inflict on them. In this context, adversaries are typically assumed to have the
powers of consensus nodes, namely they can reorder, drop or insert transactions
in blocks. Accordingly, the economic damage on a system S can be quantified
in terms of the Maximal Extractable Value (MEV) that adversaries can extract
from S by leveraging these powers [9]. To provide a more concrete formulation
of the existing notions, consider a set of contracts A to be deployed in a system
S. We denote by S | A the system composed of S and A. The security criterion
in [3] requires that MEV(S | A) < (14¢) MEV(S): namely, the MEV extractable
from S | A does not exceed the MEV extractable from S by more than a factor
of £. This notion does not capture our intuition of assessing the security of A in
terms of the economic losses that A could incur due to adversaries interacting
with the context S. For example, an airdrop contract A that gives away tokens
would be deemed insecure, since interactions with S are immaterial.

In a different security setting, a similar intuition was the basis of Goguen
and Meseguer’ non-interference [10], which was originally formulated as follows:

“One group of users, using a certain set of commands, is noninterfer-
ing with another group of users if what the first group does with those
commands has no effect on what the second group of users can see”.

In the setting of smart contract compositions, this notion can be reinterpreted
by requiring that adversaries interacting with S do not inflict economic damage
to A. The notion of MEV non-interference introduced by [6] is based on this
idea, using MEV as a measure of economic damage. The approaches in [12,22] are
also based on the idea of non-interference, but replacing MEV with an explicit
tagging of contract variables into high-level or low-level variables.

A common aspect of these approaches to economic non-interference is their
qualitative nature: namely, these definitions classify a composition as either se-
cure or insecure, in a binary fashion. While such a qualitative evaluation is
sufficient when a composition is deemed secure, in case it is not it fails to give
any meaningful estimate of the degree of interference. For example, when in the
above-mentioned (insecure) composition between a lending protocol and a DEX,
a quantitative measure could provide insights into the extent to which the sys-
tem state (e.g., the liquidity reserves in the DEX) and the contract parameters
(e.g., the collateralization threshold) contribute to increasing the economic loss.

Contributions This paper introduces a quantitative notion of economic security
for smart contract compositions. Our MEV interference, which we denote by
J(S ~» A), measures the increase of economic loss of contracts A that adversaries
can achieve by manipulating the context S. We apply our notion to assess the
security of some notable contract compositions, including a bet on a token price,
and a lending protocol relying on a DEX as a price oracle. We prove some
fundamental properties of our notion: more specifically, J(S ~~ A) increases when
S is extended with contracts that are not in the dependencies of A (Theorem 1);
J(S ~» A) does not depend on the token balances of users except adversaries
(Theorem 2); IJ(S ~» A) is preserved when extending S with contracts I" that
enjoy some specific independency conditions with respect to A (Theorem 3).



Table 1: Summary of notation.

A,B User accounts A, B Sets of [user|contract] accounts
C,D Contract accounts ¢, D Sets of contract accounts

T, T Token types $1; Price of T

X, X’ Transactions X Sequence of transactions

S, S’ Blockchain states $ec(9) Wealth of contracts € in S

w, W’ Wallet states deps(C) Dependencies of contracts €
I, A Contract states tr Contract accounts in I’

2 Smart contracts model

We consider a contract model inspired by account-based platforms a la Ethereum.
The basic building blocks of our model are a set T of token types (T, T',...), rep-
resenting the native crypto-assets (e.g., ETH), and a set A of accounts. Accounts
can be user accounts A,B,... € A, (representing the so-called externally owned
accounts in Ethereum) and contract accounts C,D, ... € A..

The state of a user account is a map w € T — N from token types to non-
negative integers, representing a wallet of tokens. The state of a contract account
is a pair (w, o), where w is a wallet and o is a key-value map, representing the
contract storage. A blockchain state S is a map from accounts to their states. We
write an account state in square brackets, wherein we denote by n:T a balance
of n units of token T in the wallet, and with x = v an association of value v to
the storage variable x. For example, C[1: T, owner = A] represents a state where
the contract C stores 1 unit of T, and the variable owner contains the address A.
We write a blockchain state as the composition of its account states, using the
symbol | as a separator. For example, S = A[1: T,2: ETH] | C[1: T, owner = A] is a
state composed by a user account and a contract account.

We abstractly model contracts as the transitions they induce on blockchain
states, just assuming that contracts have an associated set of functions, which
can be called by transactions sent by users. More precisely, we assume a deter-
ministic transition relation — between blockchain states, where state transitions
are triggered by transactions X, X, . ... Similarly to Solidity, we assume that func-
tions can: (i) receive parameters and tokens from the caller, (ii) transfer tokens
to user accounts (including the caller), (iii) update the contract state, (iv) call
other contracts (possibly transferring tokens), (v) return values to the caller.
Functions can only manipulate tokens as described above: in particular, they
cannot drain tokens from other accounts, nor can they mint or burn tokens. In
our use cases in Section 4, we will instantiate this abstract model using a con-
tract language inspired by Solidity. A transaction is a call to a contract function,
written A:C.f(args), where A is the user signing the transaction, C is the called
contract, f is the called function, and args is the list of actual parameters. Pa-
rameters can also include transfers of tokens from A to C, written A pays n:T.
Invalid transactions are reverted (i.e., they do not update the blockchain state).



We assume that a contract C can call a function of a contract D only if D was
deployed before C. Formally, defining C < D (read: “C is called by D”) when some
function in D calls some function in C, we require that the transitive and reflexive
closure C of < is a partial order. We define the dependencies of a contract C
as deps(C) = {C’'|C’ CC}, and extend this notion to sets of contracts € =
{C1,...,Cu}. We assume that blockchain states S enjoy the following conditions:
(i) S contains all its dependencies, i.e. if C is a contract in S, then also the
contracts deps(C) are in S; (ii) S contains finite tokens. All states mentioned in
our results are assumed to enjoy these well-formedness assumption.! We write
S =W | I for a blockchain state S composed of user wallets W and contract
states I". We can deconstruct wallets, writing S = W | W’ | I" when the accounts
in W and W’ are disjoint, as well as contract states, writing S = W | I" | A. We
denote by 1" the set of contract accounts in I'. Given X = A:C.f(args), we
write callee(X) for the target contract C.

3 Threat model

To define economic security of smart contract compositions, following [3] we
consider the Maximal Extractable Value (MEV) that can be extracted when
new contracts € are deployed in a blockchain state S = W | I', leading to a new
blockchain state S | A where A contains the initial state of the new contracts C.
Since our goal is measuring the loss of the new contracts A caused by attacking
their dependencies I', rather than considering the overall MEV of S | A, we
isolate the MEV extractable from A and compare it to the MEV that could be
extracted from A without exploiting the dependencies I'. To this purpose, we
leverage the adversary model and the notion of local MEV introduced in [6].
We start by designating a finite subset M of user accounts as adversaries. We
assume that adversaries have full control of the selection and ordering of transac-
tions — a standard assumption in definitions of MEV [3]. Then, to measure the
economic loss of a set of contracts C, we consider the wealth of € in a blockchain
state before and after the attack. The wealth of € in S, written $¢(5), is given
by the amount of tokens in each contract C € € in S weighted by their prices.
Recalling that a contract state is a pair (w,o) whose first element is a wallet,
and denoting by $1; the price of a token type T, the wealth of a single contract
state Clw, o] is given by > . w(T) - $1r, i.e. the summation, for all token types T,
of the number of tokens T in the wallet of C, times the price T.? By extending
this to all contracts in €, we obtain the following general definition of wealth:

$e(S) = Y fst(I'(C))(T) - $1s (1)

cee,T

! Note that well-formedness rules out some problematic features like reentrancy, which
instead is present in Ethereum. However, reentrancy can always be removed by using
suitable programming patterns, so we do not consider this as a limitation.

2 Here we implicitly assume that the of native crypto-assets are constant, since they
do not depend on the blockchain state. We discuss this limitation in Section 5.



Building on the definition of wealth, we now revisit the notion of local
MEV introduced in [6]. The local MEV extractable by a set of contract € in
a blockchain state S, denoted by MEV(S, ), is the maximum loss that adver-
saries can inflict to € by performing an arbitrary sequence of transactions crafted
using their knowledge. By denoting with (M) the set of transactions craftable
by M, this amounts to the maximum loss $¢ (S) —$e (S”) over all possible states
S’ reachable through a sequence X of transactions in £(M). In symbols:

MEV(S, €) = max {$e(5) —$e(9)

% en), 5% s'} 2)

Note that in MEV(S, C), adversaries are allowed to call any contract in S,
and in particular the dependencies of €. Technically, this follows from the fact
that (M) does not pose any restriction on the transactions craftable by M. To
estimate the MEV extractable from A without exploiting the dependencies I,
we introduce an additional parameter D to local MEV, representing the set of
contracts callable by M. We denote by xp (M) = {X € k(M) | callee(X) € D}
the set of transactions craftable by M and targeting contracts in D. We define:

X

MEVy (S, C) = max{$e(5) ~8e(8) [X e rp )", 5 5 s'} (3)

Note that by the finite token assumption in Section 2, the wealth is always
finite, and so also the local MEV.

4 A quantitative notion of economic security

In this section we introduce our notion of quantitative security for smart con-
tract compositions, study its theoretical properties, and apply it to analyze some
archetypal compositions. Before doing that, we motivate our definition by dis-
cussing a few intuitions about its properties.

Let S be a blockchain state, formed by users’ wallets W and contract states I,
where we want to deploy new contracts with an initial state A. Note that, by
the well-formedness assumption introduced in Section 2, the dependencies of A
must be included in I" | A, i.e. any function call made by a contract in A must
target some contracts in " or in A. We want to measure the security of the
composition S | A by analysing the additional loss that an adversary can inflict
to the contracts in A by manipulating the dependencies I'. To this purpose, our
definition will compare:

— MEV(S | A,14A), the maximal loss of the contracts in A, where adversaries
are able to send transactions to any contract in S | A;

— MEV;A(S | A,1A), the maximal loss of the contracts in A, where adver-
saries can only send transactions to contracts in A. Note that interactions
between A and I are still possible, as contracts in A can invoke functions of
contracts in I' ( “contract dependencies”), and adversaries can extract tokens
from I' to play them in calls to contracts in A (“token dependencies”).



We will call our security notion MEV interference, and denote with J(S ~» A)
the MEV interference caused by a blockchain state S to a set of contract states A.

4.1 Intuitions

We now enumerate and discuss the driving intuitions behind our definition.
Intuition 1 If A has zero wealth, then J(S ~~ A) must be zero.

Of course, if A has zero wealth, no loss can be inflicted to A, regardless of
any potential manipulation of its dependencies in S. This also underscores a
fundamental aspect of our definition — namely, that it measures what happens
in specific contract states, rather than in arbitrary reachable states of a given
contract. For this reason, according to Intuition 1, we want J(S ~» A) = 0 when-
ever A has zero wealth, not ruling out the possibility of having J(S ~~ A’) > 0
in a state A’ where the contracts in A have been funded.

Intuition 2 J(S ~» A) is zero when the contract dependencies and the token
dependencies of A in S are irrelevant to the ability of inflicting a loss to A.

For example, consider an arbitrary S where we want to deploy an airdrop
contract A that transfers tokens from its balance to any entity who requires
them (see Listing 1.1). In this setting, the adversary cannot gain any advantage
from the contracts in .S, since she can extract the full MEV from the airdrop by
interacting with A, only. Therefore, we require that the MEV interference from
S to A is zero. Note that this intuition corresponds to the requirement that
a zero quantitative MEV interference is equivalent to the notion of qualitative
MEV non-interference introduced in [6].

Intuition 3 J(S ~~ A) should not decrease if we extend S with contracts that
are not dependencies of A.

For example, consider a state S where we want to deploy new contracts A,
with an interference estimated as J(S ~» A). Assume now that the deployment
of A is front-run by that of another set of contracts I". Of course A cannot have
dependencies in I, since otherwise it would not be possible to deploy A in S
(actually, we would violate the well-formedness assumption of Section 2). Now,
the interference J(S | I' ~» A) could either be equal to I(S ~» A), or possibly
increase when the adversary can drain tokens from I to inflict more loss to A.
Intuition 3 states that, in any case, the interference should not decrease.

Intuition 4 J(S ~ A) should be independent of the users’ wallets in S, except
for those belonging to adversaries.

Here the intuition is that the adversary does not have any control on the to-
kens in users’ wallets, and therefore these tokens play no role in the extraction of
MEYV from A. This assumption highlights a simplification in our attacker model,



namely that the mempool of users’ transactions is not known by the adversary.
Formally, this assumption is visible in the definition of MEV in (3), where the
set kp (M) of transactions craftable by the adversary does not take the mem-
pool as a parameter. Were mempool transactions playable by the adversary, then
their success would also depend on the users’ wallet, and consequently the MEV
interference would possibly depend on the them. We discuss this in Section 5.

Intuition 5 J(S ~ A) should have a mazimum, corresponding to the case where
the economic loss that can be inflicted to A is purely due to the interactions of
the adversary with S'.

For example, consider a state S that contains an airdrop contract releasing
one unit of a token type T. We want to deploy a new contract A that, upon the
payment of 1: T, releases all its balance of n: ETH. Assume that the adversary has
no tokens of type T, so that she needs to extract 1: T from the airdrop in order
to extract MEV from A. If we measured the interference from S to A as the
difference between unrestricted and restricted MEV, i.e.:

(S ~ A) = MEV(S | A,1A) = MEV;A(S | A,1A)

then we would obtain that J(S ~» A) = n - $1gry, i.e. the interference would be
proportional to the ETH balance in A. We do not find this measure particularly
insightful: after all, what we observe is just that all the MEV extractable from A
is due to the interaction with the context S. In general, under these conditions,
our intuition is that the interference should take its maximum value. Assuming
to constrain interference in the range [0, 1], the extreme 0 would represent the
case where the context is not useful to extract MEV from A (as per Intuition 2),
while the extreme 1 would represent the case where all the MEV extractable
from A depends on making the adversary interact with the context.

Armed with our list of desiderata, we define MEV interference. We will see
in Section 4.3 that this notion is coherent with all our intuitions. MEV inter-
ference measures the fraction of MEV(S | A, tA) that can be extracted without
using the dependencies of tA.

Definition 1 (MEV interference). For a blockchain state S and a contract
state A, we quantify the MEV interference caused by S on A as:

_ MEV;A(S | A,14)

J(S ~ A) = MEV(S | A,14)
0 otherwise

if MEV(S | A,$A) #£0

We observe that our notion is coherent to MEV non-interference, meaning
that J(S ~» A) =0 if and only if S and A are non-interferent according to [6].

4.2 Use cases

We now illustrate our notion through a set of relevant use cases.



Listing 1.1: A simple airdrop contract.

contract Airdrop {
fund(pay x:T) { } // any user can deposit x:T to the contract

withdraw(n) { // any user can withdraw any amount of T from AirDrop
require (balance(T)<=n); // check that the contract has at least n:T
transfer (sender ,n:T); // transfer n:T to the caller

¥

}

Listing 1.2: A simple airdrop contract with fees.

contract AirdropFee {
fund(pay x:T) { } // any user can deposit x:T to the contract
withdraw(n) {
fee = (FeeManager.getFee() * n) / 100; // get feeRate from FeeManager
transfer (sender, n-fee:T);
transfer (FeeManager.getOwner (), fee:T); // send fee to owner
¥
}
contract FeeManager {
constructor () { owner=sender; feeRate=1; }
getOwner () { return owner; }
getFee () { return feeRate; }
setFee (r) { require (r>=0 && r<=100); feeRate=r; }

Ezample 1 (Any/Airdrop). Consider an instance A = Airdrop(n:T] of the air-
drop contract in Listing 1.1, to be deployed in an arbitrary blockchain state S.
Note that MEV(S | A, {Airdrop}) = n - $1r, since the adversary can craft a
transaction Airdrop.withdraw(n) to extract all the tokens from the contract.
The restricted MEVipirarop} (S | A, {Airdrop}) is equal to the unrestricted one,
since the adversary just needs to interact with Airdrop. Therefore, if n > 0:

MEV{Airdrop}<S | A, {Airdrop}) -0
MEV(S | A, {Airdrop}) B

j(Sv—)A)Zl

The same holds if n = 0. This is coherent with our intuition, since the adversary
does not need to exploit the contracts in S to extract MEV from A. o

Ezample 2 (FeeManager/Airdrop). Consider a variant of the airdrop contract,
where each withdrawal requires the user to pay a proportional fee (Listing 1.2).
To obtain the fee rate, the AirdropFee contract calls the FeeManager contract.
Assume that we want to deploy A = AirdropFee[n:T] in a blockchain state S
containing FeeManager|[feeRate = r|. The unrestricted MEV is n - $11, since
an adversary can set the fee to 0 by calling FeeManager.setFee(0) and then
withdraw the full balance of n: T from AirdropFee. Instead, the restricted MEV
only amounts to (n — rn/100) - $11, since the adversary cannot call FeeManager
to manipulate the fee rate. Therefore, if n > 0:

n—rnf100 1



This is coherent with our intuition: the closer the fee rate is to 100, the greater
the difference between restricted and unrestricted MEV, and so the possibility
for the attacker to inflict more damage to the contract. o

Ezample 3 (Airdrop/Exchange). Consider an instance of the Exchange contract
in Listing 1.3, to be deployed in a blockchain state S containing an instance of
the Airdrop contract in Listing 1.1. More specifically, let:

S = M[ny: T] | Airdrop[n,: T]
A = Exchange[ng:ETH, tin = T, tout = ETH, rate = r, owner = A]

The Exchange contract allows any user to swap tokens of type tin with tokens
of type tout (in the instance, T and ETH, respectively), at an exchange rate of 1
unit of tin for rate units of tout. For simplicity, assume that rate is a floating-
point number, and arithmetic operations are floored, and that $1; = $1gm = 1.
We evaluate the MEV interference from S to A. When the exchange rate is
favourable, i.e. the rate is greater than 1, the adversary M can extract MEV
from A by exchanging T for ETH. This is possible as far as Exchange has enough
ETH balance. The MEV can be further increased by draining n,: T from Airdrop,
and swapping these tokens through the Exchange. More precisely, we have:

[ -] if [ ] < mg

MEV. xchange S A7 Exch =
{Exchang }( | {Exchange}) {TLE otherwise

: if .
MEV(S | A, {Exchange}) = {TLL(:M +na) 7] ;t}Ll(eT;:Vi:enA) r] < ng

Therefore, the MEV interference from S on A is bounded by:

mf(ny4ny)  if [(ny +na) 7] < ng
IS~ A) < 1 —merfng if [(ny+ny) 7] > ng > [ny -]
0 otherwise

When M is sufficiently rich, she can drain the Exchange without invoking the
Airdrop. Instead, when M’s wealth is limited, she is able to inflict a greater loss
of Exchange by leveraging the Airdrop. So, the interference caused to Exchange
in this case has a dual dependence on the adversary’s and the Airdrop’s wealth.
Furthermore, the interference is inversely proportional to M’s wealth, i.e. richer
adversaries have less need to exploit the context, resulting in lower interference
from S to A. This is coherent with our intuition, since we would expect a poorer
adversary to benefit more from exploiting the Airdrop than a richer one. o

Ezample /4 (AMM/Bet). The Bet contract in Listing 1.4 allows a player to
bet on the exchange rate between a token and ETH. It is parameterized over an
oracle that is queried for the token price. Bet receives the initial pot from its
owner upon deployment, and a player must match this amount to enter the bet.



Listing 1.3: An exchange contract.

contract Exchange {

constructor (pay x:tout_, tin_, rate_) { // receive x:tout_ from sender
require rate_>0 && tin_!=tout_;
rate=rate_; tout=tout_; tin=tin_; owner=sender;

}

getTokens () { return (tin,tout); }
getRate (tout) { return rate; } // 1:tin for getRate(tout):tout
setRate(r) { require sender==owner; rate=r; } // sender can update rate

swap (pay x:tin) { // sender sells x units of token tin
y = x*getRate(tout); // units of token tout sold to sender
require balance(tout)>=y; // Exchange has enough tout tokens
transfer (sender, y:tout); // send y units of token tout to sender
}
¥

Before the deadline, the player can win a proportion potShare of the total pot
if the oracle exchange rate exceeds or equals potShare times the bet rate. The
remaining portion is taken by the owner as a fee. Consider an instance of Bet
using the Automated Market Maker AMM in Listing 1.5 as a price oracle:

S = M[m:ETH] | AMM[ro: ETH, r1: T] | blocknum=d — k| - - -
A = Bet[b:ETH, owner = A,tok = T,rate = r,deadline = d|

When M is allowed to leverage Bet’s dependency, she can manipulate the AMM
to influence the internal exchange rate. Given M has sufficient funds to enter
the bet, she can fire the following sequence of transactions, where, in the swap
transaction, x = m — b > 0 is the number of ETH units sent to the AMM and
y = |#r1/ro+x] is the number of T units received (we omit M’s wallet for brevity):

M:Bet.bet(M pays b:ETH,p)

S|A

M:AMM.swap(M pays x:ETH,0)

AMM[rg + 2:ETH,r; — y: T] | Bet[2b: ETH, - -] | - -

M:Bet.win()
—_

M:AMM.swap(M pays y:T,0)

AMM([ro: ETH, 71: T] | Bet[2b(1 — p): ETH, ---] | ---

The bet value that maximizes the loss caused to Bet depends on M’s wealth, and
is given by p = |ro+2/r(r1—y)|. Assuming M enters the bet only for p > 1/2 (since
a smaller proportion makes the bet irrational for her), by Equation (2) we have:

MEV(S | A, {Bet}) < (2(T0+m_b)2/rr07‘1 — 1) b

Whereas, if M was restricted to interact with Bet, she is limited to settle on a
lower bet value and Equation (3) gives us:

if TO/rrl > 1/2

MEV(po0 (S | A, {Bet}) > 4/ =01
e ) >
{Bet} ° 0 otherwise

10

AMM[ro: ETH,71: T] | Bet[2b: ETH, potShare = p, -] | - -+

AMM[ro + 2: ETH, 7 — y: T] | Bet[2b(1 — p):ETH, -] | -+



Listing 1.4: A Bet contract.

contract Betoracie {1

constructor (pay x:ETH, tok_, deadline_, rate_) {
require tok_!=ETH && oracle.getTokens ()==(ETH,tok_);
tok=tok_; deadline=deadline_; rate=rate_; owner=sender;

}

bet (pay x:ETH, p_) { // sender gives x:ETH to Bet and chooses potShare
require player==null && x==balance (ETH) && p_>=0 && p_<=1;
potShare = p_; player=sender;

win() { // only callable by player before the deadline
require block.num<=deadline && sender==player;
if (oracle.getRate (ETH)>=potShare*rate)
transfer (player, potSharex*balance(ETH) : ETH);
}
close() { // after the deadline, transfer the ETH balance to the owner
require block.num>deadline;
transfer (owner, balance (ETH):ETH);
}
}

Accordingly, MEV interference is estimated through Definition 1 as follows:

2brg —rrory (b+1) . 1
L- b(2(ro+m—>b)2—rror1) if TO/Trl > /2

1 otherwise

J(SWA)<{

We observe maximum interference when M exploits the Bet by manipulating the
AMM, which would be impossible by interacting exclusively with Bet. Further-
more, the interference value is proportional to the adversarial wealth, as one
would anticipate. By contrast, even if M was fortunate to be draining a portion
of the Bet by fair play, she can always increase this loss by manipulating the AMM
(provided she owns adequate funds). Note that in the composition between Bet
and Exchange, the MEV interference is zero, as the adversary cannot manipulate
the exchange rate (unless she is the Exchange owner). o

Ezample 5 (AMM/LendingPool). The LP contract in Listing 1.6 implements
a lending protocol, allowing users to deposit tokens and borrow them only if
their collateralization is above a certain threshold. The collateralization is the
ratio between the value of deposits and that of debits, and is a reflection of the
borrowing capacity of a user. LP is parameterized over an oracle that is queried
for the token prices. Below we analyse a well-known attack where the underlying
oracle is an AMM, which an adversary manipulates to exceed her previously
limited borrowing capacity [11,19,5,18,1]. Consider the following instance:

S =Mz + y:ETH] | AMM[ro: ETH,71: T] A = LP[a:ETH,b: T,Cmin = Cpin, - -]

When M can interact with the AMM, she deploys her attack strategy as follows:
she first uses her capital to inflate the price of T in the AMM. Subsequently, she is
capable of borrowing a greater amount of T since the LP now uses an artificially
inflated price to determine her borrowing capacity. In particular, M fires the

11



Listing 1.5: A constant-product AMM contract.

contract AMM {
getTokens () { return (TO,T1); } // token pair

getRate(tout) { // 1:tin for getRate(tout):tout
if (tout==T0) { tin=T1 } else { tin=TO0 };
return balance(tout)/balance(tin);

}

swap(pay x:tin, ymin) { // sell x:tin to buy at least ymin:tout
if (tin==T0) { tout=T1 } else { tout=TO };

y = x*getRate (tout); // units of token tout sold to sender

require ymin<=y<balance(tout); // Exchange has enough tout tokens

transfer (sender, y:out); // send y units of token tout to sender
}

addLiq(pay x0:TO, pay x1:T1) { // add liquidity to the AMM
require balance(TO)*(balance(T1)-x1) // preserve exchange rate
== balance(T1)*(balance(T0)-x0);

following sequence of transactions, with a loan amount ¢ = |=(r0+¥)*/C,,, (r1 —2)? |
and the amount received on swap z = |¥71/ro+y]:

M:LP.deposit(M pays x:ETH)

S| A AMM[rg: ETH, r1: T] | LP[a + @: ETH, b: T, -+ -] | - -

M:AMM.swap(M pays y:ETH,0)

AMM[rg 4+ y:ETH, 7y — 2: T| | LP[@ + 2: ETH, b: T, -+ -] | - -

M:LP.borrow(t,T)
%

M:AMM.swap(M pays z:T,0)

AMM[rg:ETH, r1:T] | LP[a + :ETH,b — £: T, -] | - -~
When the LP has sufficient funds and $1zry = 1 = $17, by Equation (2) we get:
(ro+y)*
MEV(S | A,{LP}) < — 1
(514, <0 (Gt

On the other hand, if M was restricted to interact with the LP, she suffers a
reduced borrowing allowance. By Equation (3) we have:

xr%

MEYV, S| A, {LP —_—
wry(S | A4 })>CminT%

—x—1

Accordingly, MEV interference is estimated through Definition 1 as follows:

xré‘ — Cmmr(z)r%(x +1)
$(<T0-+'y)4 _'(7nnnT8T%)

IS~ A)<1—

In accordance to our expectations, the interference is indeed proportional to the
attack capital y of the adversary. Naturally, adversaries with a higher manip-
ulation capital have an increased borrowing capacity. Moreover, the degree of
interference is influenced by the AMM reserves since the profitability of the attack
rests on the cost of manipulating and de-manipulating the AMM. o

12

AMM[rg 4+ y:ETH, 7y — 2: T] | LP[a + 2: ETH, b — &: T, -+ ] | - -



Listing 1.6: A Lending Pool contract.

contract LP {

constructor (Cmin_) { Cmin = Cmin_; } // collateralization threshold
collateral(a) { // return a’s collateralization
val_minted = 0;

for ¢ in minted: val_minted += minted[t][a] * AMM.getRate (t);
val_debts = 0;

for ¢ in debts: val_debts += debt[t][al] * AMM.getRate(t);
return val_minted / val_debts;

}

deposit(a pays x:t) { // a deposits x units of token t in the LP
minted[t][a]l += x; // record the deposited units in the minted map

}

borrow(a sig, x, t) { // a borrows x units of token t in the LP
require balance(t)>=x;
debts[t]l[al += x; // record the borrowed units in the debts map
require collateral(a)>=Cmin; // a is over-collateralized
transfer(a, x:t);
}
}

4.3 Properties of MEV interference

We now study the theoretical properties of MEV interference. Because of space
constraints, we relegate to Appendix A the proofs of our statements. Lemma 1
establishes a few basic properties of MEV interference: its value is zero when the
context S has no contracts and when A is empty; furthermore, the interference
is always comprised between 0 and 1 (coherently with Intuition 5).

Lemma 1. (i) (S ~ 0) = 0; (i) I(W |0~ A) =0; (iii) 0<I(S ~ A) <1,

The following lemma formalises Intuition 1: namely, when the newly deployed
contracts A have no wealth (i.e., when $;4(A) = 0), then they have no MEV
interference from the context.

Lemma 2. If $;4(A) =0, then J(S ~» A) = 0.

Theorem 1 concretises Intuition 3, stating that widening the blockchain state
S potentially increases MEV interference to newly deployed contracts A. For-
mally, this amounts to showing that J is monotonic with respect to the opera-
tion of adding contracts I" to the context, i.e. I(S ~» A) <I(S | ' ~ A). Note
that Definition 1 assumes that the state S | A is well-formed: accordingly, the
statement of Theorem 1 implicitly assumes that A has no dependencies in I'.

Theorem 1. J(S ~ A) <J(S | T ~ A)

The following example shows that the inequality given by Theorem 1 can
be strict. This is because, even if A has no contract dependencies in I, the
adversary may exploit their token dependencies, i.e. extract tokens from /" and
leverage them to extract more tokens from A.

13



Ezxample 6. Consider the following instance of the Airdrop being added to a
blockchain state S with no contracts, where we want to deploy an Exchange:

S =M[0:T] I' = Airdrop[l: T, tout = T|
A = Exchange[100: ETH, tin = T, tout = ETH, rate = 10, owner = B]

By Lemma 1, S does not interfere with A. Instead, adding the Airdrop to S
yields (S [ I" ~ A) = 1, since MEV{gychange} (S | I' | A, {Exchange}) = 0 while
MEV(S | I' | A,{Exchange}) = 10 - $1gry. This increase is caused by the ability
of M to leverage the token dependencies between the newly deployed Airdrop
contract to extract more MEV from Exchange than previously possible. o

We observe that, in general, wealthier adversaries are not necessarily capa-
ble of causing greater interference. Conversely, it is also incorrect to infer that
wealthier adversaries cause less interference. Therefore, MEV interference does
not enjoy monotonicity with respect to the adversary’s wealth in either direc-
tion. To realise how a wealthier adversary might potentially cause more MEV
interference, we revisit Example 4: in the case where M does not possess the
necessary wealth to produce a volatility in the AMM, being richer would have
been a benefit. Conversely, we see in Example 3 how richer adversaries need not
exploit the context to the same extent as poorer ones, and we have a decrease
in interference caused with increasing adversarial wealth.

Theorem 2 concretises Intuition 4, showing that users’ wallets are immaterial
to the evaluation of MEV interference. Namely, J(S ~» A) is preserved when
removing from S all the wallets except those of adversaries. Recall that a wallet
state W is a map from accounts to wallets. Then, in a state S = W | I, we just
need to consider the restriction of W to the domain M.

Theorem 2. If dom Wy = M, then J(Woe | W | I' ~» A) =I(Wy | I' ~ A).

We now formalise token independence, which is a prerequisite for Theorem 3.
This requires two auxiliary notions: the token types that can be received by I’
in S, denoted ing(I"), and those that can be sent, denoted by outg(I").

Definition 2 (Token independence). Let S =W | I'. We define:

— ing(I") as the set of token types T for which there exists a state S’ reachable
from S through a sequence of steps, containing a transaction that causes an
inflow of tokens T to some contract in I.

— outg(I") as the set of token types T for which there exists a state S’ reachable
from S through a sequence of steps, containing a transaction that causes an
outflow of tokens T from some contract in I.

We say that contracts in I' and A are token independent in S =W | ' | A
when ing(I') Noutg(A) =0 = ing(A) N outg(I").

14



Theorem 3 provides sufficient conditions under which an adversary M attack-
ing the newly deployed contracts in A gains no advantage by deploying malicious
contracts 11 before the attack. Essentially, these conditions guarantee that the
interference caused to A is preserved when the state S is extended with contracts
I'y satisfying specific conditions, coherently with Intuition 2. Condition (i) re-
quires deps(A) to be sender-agnostic, i.e. its contract methods are unaware of the
identity of the sender, only being able to use it as a recipient of token transfers.
Condition (ii) requires token independence between the (contract) dependencies
and the non-dependencies of A which could have possibly been exploited by
M. Since Definition 1 assumes that states are well-formed, Theorem 3 implicitly
assumes that contracts in A do not have dependencies in 7.

Theorem 3. J(S ~» A) =I(S | 'y ~ A) holds if (i) deps(A) are sender-ag-
nostic, and (i) deps(A) and the non-dependencies of A are token independent
m S | Fj\/f | A.

5 Conclusions

We have proposed a notion of economic security for smart contract composi-
tions, which quantifies the economic loss adversaries can inflict to a contract by
targeting its dependencies. We discuss below some limitations and future work.

Limitations To keep our theory manageable, we have made a few simplifying
assumptions in our model. A first assumption is that the prices of native crypto-
assets are constant. Consequently, the amount of interference is not affected
by fluctuations of these prices (while they could depend on the prices provided
by DEXes, like in Examples 4 and 5). Handling price updates would require to
extend blockchain states with a function mapping tokens to their prices. Another
assumption is that the local MEV in Equation (3) does not allow adversaries to
exploit their knowledge of pending users’ transactions (the public mempool). The
rationale underlying this choice is that, in our vision, MEV interference should
be the basis for a static analysis of smart contracts, where dynamic data such
as the mempool transactions are not known. Assuming an over-approximation
of users’ transactions, we could extend our MEV interference by making the
mempool a parameter of local MEV, similarly to what done for MEV in [7].

Future work Although a few tools exist for detecting price manipulation at-
tacks in DeFi protocols [21,16,20], and others for estimating MEV opportuni-
ties [3,4], none of the existing tools address general economic attacks to smart
contract compositions. The technique underlying the detection of price manip-
ulation attacks is taint analysis, which aims at identifying potential data flows
from low-level to high-level data (in the DeFi setting, flows from to functions that
manipulate token prices to functions that transfer tokens). While this technique
could be generalised to analyse qualitative MEV non-interference, estimating our
quantitative interference seems to require more advanced techniques. Some inspi-
ration could be drawn from static analysis techniques for information-theoretic
interference [8,17,15,2]. We plan to explore this research line in future work.

15



References

10.

11.

12.

13.

14.

Arora, S., Li, Y., Feng, Y., Xu, J.: SecPLF: Secure protocols for loanable funds
against oracle manipulation attacks. In: ACM Asia Conference on Computer and
Communications Security (ASIA CCS). ACM (2024). https://doi.org/10.1145/
3634737 .3637681

Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting se-
mantics and its application to static analysis of information flow. In: ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL). pp. 874-887.
ACM (2017). https://doi.org/10.1145/3009837.3009889

Babel, K., Daian, P., Kelkar, M., Juels, A.: Clockwork finance: Automated analysis
of economic security in smart contracts. In: IEEE Symposium on Security and
Privacy. pp. 622-639. IEEE Computer Society (2023). https://doi.org/10.1109/
SP46215.2023.00036

Babel, K., Javaheripi, M., Ji, Y., Kelkar, M., Koushanfar, F., Juels, A.: Lanturn:
Measuring economic security of smart contracts through adaptive learning. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
pp. 1212-1226. ACM (2023). https://doi.org/10.1145/3576915.3623204
Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: Lending Pools in Decentral-
ized Finance. In: Workshop on Trusted Smart Contracts. LNCS, vol. 12676, pp.
553-578. Springer (2021). https://doi.org/10.1007/978-3-662-63958-0_40
Bartoletti, M., Marchesin, R., Zunino, R.: DeFi composability as MEV non-
interference. In: Financial Cryptography and Data Security (FC 2024). LNCS,
vol. 14745. Springer (2025), https://doi.org/10.1007/978-3-031-78679-2_20
Bartoletti, M., Zunino, R.: A theoretical basis for MEV. In: Financial Cryptogra-
phy and Data Security. LNCS, Springer (2025), to appear

Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comput. Secur. 15(3), 321-371 (2007).
https://doi.org/10.3233/JCS-2007-15302

Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, 1., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symp. on Security and Privacy.
pp. 910-927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040
Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy. pp. 11-20. IEEE Computer Society (1982).
https://doi.org/10.1109/SP.1982.10014

Gudgeon, L., Pérez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. In: Crypto Valley Conference on Blockchain Technology (CVCBT).
pp. 1-15. IEEE (2020). https://doi.org/10.1109/CVCBT50464.2020.00005
Guesmi, S., Piazza, C., Rossi, S.: Noninterference analysis for smart contracts:
Would you bet on it? In: Distributed Ledger Technology Workshop (DLT). CEUR
Workshop Proceedings, vol. 3791. CEUR-WS.org (2024)

Kitzler, S., Victor, F., Saggese, P., Haslhofer, B.: A systematic investigation of
DeFi compositions in Ethereum. In: Financial Cryptography and Data Security
Workshops. LNCS, vol. 13412, pp. 272-279. Springer (2022). https://doi.org/
10.1007/978-3-031-32415-4_18

Kitzler, S., Victor, F., Saggese, P., Haslhofer, B.: Disentangling Decentralized Fi-
nance (DeFi) compositions. ACM Trans. Web 17(2), 10:1-10:26 (2023). https:
//doi.org/10.1145/3532857

16


https://doi.org/10.1145/3634737.3637681
https://doi.org/10.1145/3634737.3637681
https://doi.org/10.1145/3634737.3637681
https://doi.org/10.1145/3634737.3637681
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1109/SP46215.2023.00036
https://doi.org/10.1109/SP46215.2023.00036
https://doi.org/10.1109/SP46215.2023.00036
https://doi.org/10.1109/SP46215.2023.00036
https://doi.org/10.1145/3576915.3623204
https://doi.org/10.1145/3576915.3623204
https://doi.org/10.1007/978-3-662-63958-0\_40
https://doi.org/10.1007/978-3-662-63958-0_40
https://doi.org/10.1007/978-3-031-78679-2_20
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.3233/JCS-2007-15302
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/CVCBT50464.2020.00005
https://doi.org/10.1109/CVCBT50464.2020.00005
https://doi.org/10.1007/978-3-031-32415-4\_18
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1007/978-3-031-32415-4\_18
https://doi.org/10.1007/978-3-031-32415-4_18
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857
https://doi.org/10.1145/3532857

15.

16.

17.

18.

19.

20.

21.

22.

Klebanov, V.: Precise quantitative information flow analysis - a symbolic approach.
Theoretical Computer Science 538, 124-139 (2014). https://doi.org/https://
doi.org/10.1016/j.tcs.2014.04.022

Kong, Q., Chen, J., Wang, Y., Jiang, Z., Zheng, Z.: DeFiTainter: Detecting price
manipulation vulnerabilities in DeFi protocols. In: ACM SIGSOFT International
Symposium on Software Testing and Analysis. p. 1144-1156 (2023). https://doi.
org/10.1145/3597926.3598124

Kopf, B., Rybalchenko, A.: Automation of quantitative information-flow analysis.
In: International School on Formal Methods for the Design of Computer, Com-
munication, and Software Systems (SFM). LNCS, vol. 7938, pp. 1-28. Springer
(2013). https://doi.org/10.1007/978-3-642-38874-3_1

Mackinga, T., Nadahalli, T., Wattenhofer, R.: TWAP oracle attacks: Easier
done than said? In: IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC). pp. 1-8. IEEE (2022). https://doi.org/10.1109/ICBC54727.
2022.9805499

Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with
Flash Loans for fun and profit. In: Financial Cryptography. LNCS, vol. 12674, pp.
3-32. Springer (2021). https://doi.org/10.1007/978-3-662-64322-8_1

Wu, K.W.: Strengthening DeFi security: A static analysis approach to Flash Loan
vulnerabilities. CoRR abs/2411.01230 (2025). https://doi.org/10.48550/
arXiv.2411.01230

Wu, S., Wang, D., He, J., Zhou, Y., Wu, L., Yuan, X., He, Q., Ren, K.: DeFiRanger:
Detecting price manipulation attacks on defi applications. CoORR abs/2104.15068
(2021), https://arxiv.org/abs/2104.15068

Yao, S., Ni, H., Myers, A.C., Cecchetti, E.: SCIF: A language for compositional
smart contract security (2024), https://arxiv.org/abs/2407.01204

17


https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/https://doi.org/10.1016/j.tcs.2014.04.022
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1145/3597926.3598124
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1007/978-3-642-38874-3_1
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1109/ICBC54727.2022.9805499
https://doi.org/10.1007/978-3-662-64322-8\_1
https://doi.org/10.1007/978-3-662-64322-8_1
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://doi.org/10.48550/arXiv.2411.01230
https://arxiv.org/abs/2104.15068
https://arxiv.org/abs/2407.01204

Listing 1.7: Contracts to demonstrate sender-agnosticity.

contract C {
withdraw() { require(sender==C'); transfer(sender,n:T); }
}
contract ¢’ {
withdraw() { C.withdraw(); transfer(sender ,n:T); }
¥

A Proofs and supplementary material

Definition A.1 (Gain). The gain of C C A. when a transaction sequence X
is fired in S is given by ve (S, X) = $¢(8") — $e(S) if S %9

Equivalently, the loss of ¢ C A, when a transaction sequence X is fired in S is
given by —ye (S, X) = $e(S) — $e(S) if S =5 5.

Definition A.2 (Sender-agnostic contracts). A contract is sender-agnostic
if the effect of calling each of its methods can be decomposed as follows:

— updating the contract states (either directly or through internal calls);
— transferring tokens from and to users and contracts;
— transferring tokens to ils sender.

Further, we require that any call with the same arguments and origin, but dis-
tinct sender, has the same effect, except for the third item where tokens are
transferred to the new sender.

Ezxample A.1. To demonstrate sender-agnosticity, consider the contracts in List-
ing 1.7. Notice that € violates sender-agnosticism, since sender is used to enable
token transfers only to €.

Lemma A.1 states that solely widening the contract state does not increase
the MEV extractable from the targeted contracts. This is because the contracts
allowed to be targeted by the adversary, i.e. D, are not increased. Here, for all
S,C,D C A, writing MEVp (S, €) implicitly assumes D C §S. In other words,
the set of contracts callable by the adversary is assumed to be a subset of the
contracts in the state. Additionally, whenever contracts in S call contracts in I
(but not vice-versa), we decompose the contract state as S | A.

Lemma A.1. MEVy (W | I',C) = MEVy, (W | | I7,C)

Proof. To prove our claim, we take a sequence of transactions X € ko (M)* that
maximizes the loss —ye (W | I',X), and we show that the contract loss stays
the same when X is executed in W | I' | I". We can assume without loss of

18



generality that X is valid in W | I': in particular, it never calls methods of
contracts outside of I" since D C {I". Therefore, contracts in I are not affected

by X, and moreover X is valid in W | I" | I"'. SowehavethatW|Fi>W’|F”,

implies W | I" | T” 5w | I | I'". This holds since there are no internal
contract calls from 7" to 7I”. Note that this, however, does not restrict contract
calls from I to {I". Finally, to prove our claim that the loss stays constant we
note that

YW T | T X)=8Se(W' | I | T")=S$e(W | I'| )
=$e(I" | 1) =$e(I' | )
=8c(I")+8c(I") =8e(I') —Se(I")
=8e(I") —Se(I")
=S$e(W' | I")=$c(W|T)
Z’YG(W| F,)?)

This implies
MEVy (W | I',€) < MEVy (W | I | T, @) (4)

Now, we take a valid sequence of transactions Y € kg (M)* that maximizes the
loss —ye (W | I | I",Y). Because Y € ko (M)* consists of transactions targeting
contracts in D C {1, and since there are no internal contract calls from 117 to
11", we have that contracts in I are not affected by Y. This is because there
are no direct or indirect (internal) calls to contracts in I”'. Because Y is valid

in W | I' | I, we have that W | I | I - W” | I | I'. Furthermore,
Y is also valid in W | I" since it does not consist of any direct/indirect calls
to I (.- D C {I'). So we have that W | " | I X | I | T" implies

w|r X W | I'""”. And we can trace back the steps to prove that the loss stays
constant.

YeWI[I,Y)=8c(W"|I'")—-Se(W|I)
=8$e(I") —Se(I)
=$c(I")+8c(I") —$e (') —S$e(I)
=$e (I | I") = 8e(I"| I")
=Se(W" | I [T") = Se(W || I")
=ve(W|I'[I"Y)

This implies
MEVy, (W | I' | I, @) < MEVy (W | T, €) (5)

(4) and (5) gives
MEVy, (W | I, €) = MEVi (W | I | I, €)

19



Proof of Lemma 2

Proof. From Item 2 and Item 5 of Lemma 1 in [6], we have:
0 < MEV;A(S | A,14) < MEV(S | 4,14) < $14(A)

Now $;4(A) = 0 implies that MEV(S | A,1A) = 0, which using Definition 1
gives our thesis. ad

Proof of Lemma 1

Proof. For (i), note that MEV(S | A,TA) = 0, and so the thesis follows by Def-
inition 1.

For (ii), in the case where MEV(S | A,1A) = 0, we have J(S ~ A) = 0 by
definition. And in the case where MEV(S | A, 7A) # 0, we have that:

_ MEV;A (0] A,14)

W0~ A)=1 MEV(D | A, TA)

By Item 4 of Lemma 1 in [6], MEV(0 | A,TA) = MEV;A (0| A, tA), this gives
IO~ A)=0.

For (iii), in the case where MEV(S | A,1A) = 0, we have J(S ~~ A) = 0 by
definition. And in the case where MEV(S | A,TA) # 0, we have that:

0 <MEViA(S | A, tA) < MEV(S | A,1A) by Item 5 and Item 2 in [6]
MEV; A (S | A, 1A)
<
= 0= NEV(S [ A,74)
MEViA(S | A,14) _,
MEV(S | A,1A) —

<1

=0<1-

which implies 0 < J(S ~ A) < 1. a

Proof of Theorem 1

Proof. By Definition 1, we have two cases:

If MEV(S | A,tA) =0, then J(S ~ A) =73(S | ' ~ A) = 0, hence the thesis
holds trivially. Otherwise, if MEV(S | A,TA) # 0:

MEVTA(S | AjtA)
MEV;(g12)(S | 4,14)

IS~ A)y=1-—

_ MEVA(S || A,14)
MEV;(sr12)(S | I' | A,14)

IS |~ A)=1

20



We start by checking that the following inequality holds:
MEVi(512)(S | A,14) < MEVi(s1r1ay(S | I A,14) (6)

We split the proof of (6) into two parts. We first prove that the MEV stays
constant when we increase the contract state S':

MEV;(g12)(S | A,14) = MEVy(g12)(S | I' | A, tA) (7)

and then prove that the MEV potentially increases when we increase the number
of target contracts available to the adversary M:

MEVi(g12)(S | I'| A, 1A) S MEVi(s1rjay(S | '] A,14) (8)

Equation (7) follows from Lemma A.l. Equation (8) follows from Item 2 of
Lemma 1 in [6]. So, we have proven that (6) holds. Observe that the following
holds by Lemma A.1:

MEV;A (S | A, 1A) = MEViA(S | ' | A, tA) (9)
We know from (6),
MEVi(512)(S | A,14) < MEV;(sir12)(S [ I A, 14)

Taking the reciprocal on both sides gives us

1 1
>
MEVi(g12)(S | A,14) = MEVi(sirjay(S | '] A,14)

Using (9), we get

MEViA(S [A,14) _  MEVia(S | I | A,14)
MEV;(5124)(S | A, TA) = MEVi(sr1a)(S | I'| A,14)

which finally gives us

_ MEVTA(S | A,14) <1- MEVTA(S | | A TA)
MEV;(s124)(S | A,14) — MEVy(gr1a)(S | I'| A,1A)

which gives our thesis (S ~» A) < IJ(S | " ~ A). O

Proof of Theorem 2

Proof. From Item 1 of Lemma 2 in [6], we have that:
dOij\/{ =M = MEVD(W]\/{ | W| F,G) = MEVD(WJ\,{ | F,G)
Hence, we have:

MEVT(1‘|A)(WJV[ | W| I | A,TA) = MEVT(1~|A)(WJW | I | A,TA)7 and
MEVipa (Wt | W | T | A TA) = MEV;A(Woy | T | A,14)

which gives us:

21



Now, we introduce the useful auxiliary notion of stripping which will later be
used in Theorem 4 and Theorem 3. Formally, given a set of contracts D,C C S,
we define the stripping of D w.r.t €, (denoting it with D [¢), as the restriction
of D to the domain deps(C). Theorem 4 gives sufficient conditions under which
we can strip D of all the non-dependencies of € while preserving MEVy (S, C).
Condition (i) is that contract methods are sender-agnostic, i.e. they are not aware
of the identity of the sender, being only able to use it as a recipient of token
transfers. Condition (ii) ensures that D consists enough contracts to reproduce
attacks in the stripped state. Condition (iii) requires that the dependencies and
the non-dependencies of € in D are token independent in S. In other words,
there are no token dependencies between D [e and D \ deps(C), which could
have potentially be exploited by non-wealthy adversaries.

Theorem 4. MEVy (S, C) = MEVy,, (S, C) holds if the contracts C' = deps(C)N
deps(D \ deps(Q)) satisfy: (i) C' are sender-agnostic, (ii) € C D, and (iii)
Dle and D\ deps(C) are token independent in S.

Proof. First note that MEVnp,, (S,€) < MEVyp (S, €) holds by ?7?, so we just
need to show that

MEVy (S, €) < MEVp,, (S, C)

To do so, we take a sequence of transactions X € kg (M)* that maximizes the
loss of € when executed in state S (we can assume w.l.o.g that X is valid in S ).
We need to show that there is a sequence Y € kope (M)" that causes a loss to €
greater or equal to the one caused by X, i.e. —ye(S,Y) > —7e (S, X).

To construct Y we start by considering f to be the sequence of method calls
that are performed upon the execution of X in state S. Note that f includes
method calls sent directly from a transaction as well as internal calls that are
performed from another called method. We now create a subsequence g that
contains only the calls that are either:

(a) due to a transaction of X directly calling a contract in deps(€), or
(b) due to an internal call in which a method of a contract not in deps(C) calls
a method of a contract in deps(C).

Claim (1). A method m whose call appears in § due to condition (b) belongs to
a contract in deps(C) N deps(D \ deps(C)).

Proof of Claim (1). Clearly m is a method of a contract in deps(C). Moreover,
we know that it has been called internally from a method that is not in deps(C),
and that this call has originated from a transaction in X. Such a transaction
may only call a contract of D (since X € xyp (M)*), and we know that it is not
calling a method of deps(C) (since deps(C) is closed downward, and m has been
called from a method not in deps(C)). So, the transaction that originated the
call to m must have been targeting a contract in D \ deps(C), meaning that
m € deps(D \ deps(C)). O

22



We now let Y be the sequence of transactions that directly perform the calls
in g, in the same order, with the same arguments and origin. If any of the
original calls transferred some tokens, then the corresponding transaction of \%
will provide the same amount of tokens. Note that this is because the adversary
must have enough tokens to fund all the calls in Y. Indeed, the adversary has
enough funds to execute )2, and any token that she gains from the discarded
transactions cannot be used by calls in V, due to the token independence of
Dle and D\ deps(C) in S (by assumption).

Claim (2). Y € rppo (M)*
Proof of Claim (2). We have two cases:

1. if a method is in g due to (a), then it has been called directly from a transac-
tion in X, which belongs to kDo (M)". That transaction can be copied and
put into \2

2. If a call is in § due to (b), then by Claim (1) it belongs to a contract in
deps(C) N deps(D \ deps(€)), which is contained in D by assumption (ii).
Moreover, M is able to craft the arguments of that method by simulating
the execution of X. This means that the transaction Y € Y calling the
method belongs to ko, (M)".

We now need to show that Y and X modify the state of contracts in I in the
same way. Note that methods that are in § due to (b) are sender-agnostic due
to assumption (i) and Claim (1). So, the fact that in the execution of Y they are
called directly from a transaction, while in the execution of X they are called
from another contract, does not affect the execution of these methods relatively

to €. More in detail, it is important to realize that the sequence h of method
calls performed upon the execution of Y contains g but does not coincide with
it, since it also_> includes all the internalqcalls that are performed by methods
in ¢g. In fact, h is the subsequence of f that contains every call to methods
of contracts in deps(€). For this reason, both f and ﬁ modify the state of
contracts D [e in the same way; and this implies that Y is valid in S and that
—7e(8,Y) = —ye (S, X) (since contracts in € are not affected by the absence of
contracts outside of D J¢). O

Proof of Theorem 3

Proof. We first note the implicit assumption that tA do not have dependencies
in 17, i.e. deps(A) NI = 0. Since otherwise, the state S | A is not well-
formed and the thesis does not make sense.

In this proof, we use the notation {(S | A) [+a to denote deps(A). Note that
this is because deps(A) N1 = (), and we can strip away from S | I'ye | A
all contracts in 'y. Furthermore, formally, “the non-dependencies of A in state
S | I'ye | A7 are the contracts 1(S | I'nt) \ deps(A). Hence, Condition (ii) is

23



equivalent to stating that contracts (S | A) [y4 and (S | I'y) \ deps(A) are
token independent in S | I'y | A.

We start by showing the following two equalities, which help us to prove our
thesis:

MEV(S | 4,14) = MEV(S | I'ac | A,14) (10)

MEViA (S | A, tA) = MEV;A(S | ' | A,14) (11)

Observe that (11) follows directly from Lemma A.1. Indeed, widening the con-

tract state does not increase the MEV extractable from A since the contracts

that M is allowed to target is fixed. Next, to prove (10), we start by proving the
following equality using Theorem 4:

MEVi (s ja)(S | I'vi | A, 1A) = MEVigy, , (S | I'vt | 4, 14) (12)

By letting D = 1(S | Iy | A), we have
€ = deps(A) (1 deps(H(S | T'nc | A)\ deps(4))

where € C D and € are sender-agnostic (by assumption). Furthermore, 1(S | A) [t
and T(S | I'y) \ deps(A) are token independent in S | I'y¢ | A. This implies
that all three conditions of Theorem 4 are satisfied and we have proven (12).
Next, using Theorem 4 again, we prove the equality

MEVi(g12)(S | I'ne | A,14) = MEVigp, , (S | I'ne | A, 14) (13)

To prove (13), this time we let D = (S | A) and we have
€ = deps(A) N deps(1(S | A)\ deps(A))

where ¢’ C D and that contracts in €’ are sender-agnostic (by assumption).
Furthermore, the token independence of (S | A) [44 and (S | I'nt) \ deps(A)
in S | I'ye | A implies the token independence of 1(S | A) [y and 15\ deps(A)
in S| A (to see this, substitute "5 = (). This means that all three conditions
of Theorem 4 are satisfied and we have proven (13). Now we can prove (10) by
observing the following chain of equalities:

MEVT(S|A)(S | FM‘ | A,TA) = MEVJ[(S|FM‘A)(S ‘ FJ\,{ I A,TA) from (12) and (13)

| I from Lemma A.1

MEV;(512)(S | A,1A) MEVi(siry2)(S | I'nt | A,1A)

I I by Item 4 of Lemma 1 in [6]
MEV(S | A,14) MEV(S | I | A,14)
Now, our thesis directly follows from Equation (10) and Equation (11). O

24



	A quantitative notion of economic security for smart contract compositions

