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Abstract. This paper revisits a flaw in the Merkle tree construction
underlying Bitcoin’s light client security model. Although Bitcoin was
innovative in introducing Proof of Work and simple payment verification
(SPV), a design shortcoming in its Merkle tree structure can be exploited
to prove the inclusion of a malicious or nonexistent transaction in a block.
We investigate how this fault remains not only theoretical but can com-
promise the security of real-world systems. In particular, we examine
Core Chain (an EVM-compatible blockchain using delegated Proof of
Work from Bitcoin miners), which relies on a Bitcoin light client for con-
sensus. We show that an attacker can exploit the Merkle tree flaw to forge
proofs of mining power delegation. By removing all mining power from
legitimate validators, the entire consensus process can be disrupted. Fur-
thermore, we outline potential mitigations and best practices for light-
client developers, and emphasize why those do not suffice, and necessary
changes within Bitcoin itself are required to eliminate this vulnerability.
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1 Introduction

Bitcoin [15] introduced the first decentralized and permissionless cryptocurrency
system, leveraging Proof of Work (PoW) to secure the network. Its key innova-
tion lies in a protocol that allows participants to agree on a global state with-
out central authorities. One of the fundamental ideas presented in the Bitcoin
whitepaper is the concept of a Simple Payment Verification (SPV) client - often
referred to as a light client. By verifying the work in block headers while using
cryptographic Merkle proofs to check the inclusion of specific transactions, light
clients can verify the inclusion of transactions in the Bitcoin network using a
constant amount of external information and no trust.

Despite its remarkable design, Bitcoin has certain known but often under-
stated shortcomings. Among these is a subtlety in the Merkle tree construction
used to compute a block’s Merkle root. In principle, to compute the Merkle root,
each transaction is hashed at the leaves of the Merkle tree, and internal nodes
are generated by concatenating and hashing their child nodes. However, Bitcoin
does not strictly enforce that the leaves’ data format (transaction structure) dif-
fers from the internal nodes. As a result, it is possible to interpret the value of an
internal node as if it were a leaf, a valid 64-byte transaction, enabling malicious
“inclusion” [13].
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Although this issue has been publicly disclosed, there remains limited aware-
ness of its real-world implications and many practical implementations may still
be at risk. In this work, we demonstrate how the Core Chain consensus mech-
anism can be exploited, risking more than $500M at the time of reporting
[7], to illustrate that the vulnerability persists in certain systems, highlighting
the need for a more thorough examination of the Merkle tree construction at
the Bitcoin protocol level.

Core Chain uses special form of a Proof of Stake (PoS) for its consensus
mecahnism. In a standard PoS system, validators lock up funds (“stake”) to
receive voting power in the network. The validators can then use their voting
power to participate in the chain’s consensus and prevent censorship. When
the validators act corecctly, they recieve rewards, which incentivize them to
participate honestly. Otherwise, if the validators act incorrectly or malicously,
their locked up funds are taken away from them in a process called “slashing”.

Core Chain extends this protocol with Delegated Proof of Work. The net-
work allows validators to increase their voting power by delegating (assigning)
mined Bitcoin blocks to their Core Chain’s address. This is a form of restak-
ing, a mechanism in which you can use the same resources to secure more than
one application. Core Chain uses a Bitcoin SPV client to verify the delegation,
making it a high value target for an attacker that looks to disrupt the network.

Responsible Disclosure. After discovering this vulnerability within the Core
Chain delegated PoW mechanism, we conducted responsible disclosure through
the Immunefi bug bounty platform [I]. Both Immunefi and the Core team later
agreed to allow the publication of the findings. All findings are up to the date
of reporting the issue on March 2024.

1.1 Our Contributions
In this work, we make the following contributions:

— We review the Merkle tree flaw in Bitcoin’s design in a practical setting,
and clarify why it allows adversaries to prove the inclusion of non-existent
or manipulated transactions.

— We show a novel attack on the Core Chain blockchain that exploits this de-
sign. We show how an attacker can exploit Core Chain’s reliance on Bitcoin’s
light client to remove everyone’s voting power from the system, by carefully
forging Merkle proofs of non-existant transactions.

— We revisit possible mitigations for the issue and discuss where they fail in
practice, arguing in favor of a Bitcoin fork.

1.2 Related Works

The SPV client security issue emerging from the Bitcoin Merkle tree design was
discussed in prior works and online discussions [I3J16/512], previously affecting
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Bitcoin Core (assigned CVE-2017-12842 [4], not to be confused with Core Chain)
and Keep Network [17].

Additionally, a different vulnerability with the Bitcoin Merkle tree design
was previously found and patched at the protocol level (assigned CVE-2012-2459
[3]). This issue was due to padding the block with extra transactions in case the
number of transactions was odd, making the real block indistinguishable from
the padded block.

Our attack on Core Chain is a form of exploiting restaking mechanisms.
Another perspective on the subject is how the delegated PoW affect the eco-
nomics of the network and wether this can be exploited as well (for example,
with enough similar networks, a small portion of the compute power on the
Bitcoin network could provide unproportional aggregate voting power across the
other networks). The theory of economic security of restaking networks has been
explored in [TTI6J12].

1.3 Outline

We begin by reviewing Bitcoin’s Merkle tree design and its flaw in the next
section. In Section [3] we then show our attack on Core Chain that exploits this
design flaw. We conclude in Section [d where we discuss mitigations and next
steps for the community.

2 Bitcoin’s Design Flaw

The primary function of a light client (SPV client) in Bitcoin is to verify that a
given transaction is included in a specific block without downloading the entire
block. This is achieved using block headers and Merkle proofs [14].

2.1 What Is a Light Client?

A light client (or SPV client) differs from a full node in that it does not store or
validate all transactions. Instead, it:

— Downloads block headers: The client obtains each block header, which
includes the Merkle root of transactions and the nonce used in Proof of
Work.

— Verifies Proof of Work: The client checks that the header hash is below the
network’s target, thereby confirming that miners expended computational
effort.

— Receives Merkle proofs: For any transaction of interest, the client obtains
a Merkle proof (the path in the Merkle tree from the leaf to the root).

By hashing the transaction with the intermediate nodes in the proof, the client
can reconstruct the Merkle root and compare it against the root included in
the verified block header. If they match, the transaction is deemed part of that
block.
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2.2 Why the Merkle Tree Design Is Faulty

In a typical Merkle tree, the leaves represent atomic data items (e.g., transac-
tions), and each internal node is a hash of its children:

parent = Hash(child1 || child2).

To provide a proof of inclusion for a leaf, you must provide the internal nodes
adjacent to the path from the leaf to the root, as illustrated in Figure

Merkle Root
H(H(t1) 11 H(t2) H(H(t3) |1 H(t4))
N N
H(t1) H(t2) H(t3) H(t4)
t1 t2 t3 t4

Fig. 1. A simplified Merkle tree representing four transactions (H represents a hash
function). The shaded nodes are used as the proof for transaction ¢1.

In Bitcoin, the leaves are specifically the double-SHA256 hash of each transac-
tion’s serialized bytes. As we progress up the tree, the internal nodes are likewise
double-SHA256 hashes of their children. Crucially, in secure Merkle tree usage,
leaves are distinguishable from internal nodes: an internal node is, semantically,
the hash of two children, while a leaf is the hash of a transaction.

64-Byte Transactions Are Valid However, Bitcoin does not enforce a dif-
ference in data format. A node that is a concatenation of hashes of two children
can itself be interpreted as if it were a 64-byte “transaction”, if the resulting
data meets certain conditions.

Bitcoin sets no absolute minimum size for a transaction aside from a handful
of rules that do not preclude a carefully crafted 64-byte object from being inter-
preted as a transaction. For instance, a valid Bitcoin transaction must contain:

— A 4-byte version field
— An input count and output count
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— Each input (with a previous output reference, script length, script, sequence)
— Each output (with a value, script length, script)
— A 4-byte lock time

While many typical transactions are much larger, there is no built-in rule dis-
allowing a transaction from being 64 bytes if these fields appear well-formed.
Consequently, if internal node data can be massaged to look like 64 bytes of a
transaction, it might slip past naive checks in an SPV client’s Merkle verification
code.

Since the Merkle root is computed over the entire tree, an attacker can craft
a scenario in which:

— They pick/create two real transactions whose hashes line up in such a
way that concatenating them forms a 64-byte blob that decodes as a valid
transaction.

— They demonstrate a Merkle path that claims this 64-byte entity is
included as a leaf, thus forging a transaction’s inclusion that never actually
appeared as an original leaf in the block.

Figure [2]illustrates how a valid proof can be crafted for an internal node, to
prove its inclusion as an actual 64-byte transaction.

Merkle Root

N

H(H(t1) |1 H(t2)) H(H(t3) | | H(t4))

H(t1) || H(t2) H(t3) || H(t4)

Fig. 2. Fake, but indistinguishable, view for the same Merkle tree from Figure [1} The
shaded nodes are used as the proof for the (originally) internal node H (t1) || H (t2).

3 Attack on Core Chain

In this section, we focus on Core Chain [8] as a real-world example of an un-
safe SPV-based design. Core Chain is an EVM-compatible blockchain that uses
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delegated Proof of Work from Bitcoin miners, combined with Proof of Stake, to
determine validator voting power.

Accurately computing voting power is essential for the correct execution of
the network. The security of the funds being held on the network is determined
by how hard it is to distrupt transaction processing and consensus on transac-
tion inclusion. By having the wrong voting power, legitimate validators cannot
enforce the correct behavior of the network, and other, perhaps malicious valida-
tors, can remove transactions, stop the network, and in the worst cases change
the history of the chain and remove funds from wallets.

Our analysis shows how we can leverage the Bitcoin Merkle tree issue to
cause the network to compute the voting powers incorrectly.

3.1 Core Chain Overview

Core Chain is a blockchain project advertising a Satoshi Plus consensus algo-
rithm aimed at combining:

1. Staking CORE: Locking the native token of the chain.
2. Mining Bitcoin: Bitcoin miners can delegate the blocks they mine to val-
idators in Core Chain, to increase their effective stake in the network.

To delegate a mined block to a Core validator, the Bitcoin miner includes a
coinbase transaction (the first transaction in the block) that specifies the Core
validator address in the op_return transaction field. A predefined amount of
blocks is defined as an epoch, and the more blocks delegated to a single validator
address in a single epoch, the more voting power this validtor has.

To see this, let the set of validators be V. A validator v € V on Core Chain
will have a total voting power computed as follows:

Definition 1 (Voting Power). Let C, be the amount of native tokens staked
for a validaotr v € V, and let M, be the amount of blocks delegated to it in
the current Bitcoin epoch, as configured by the chain. The validaor has a total
voting power of [10]:

po=pM, > Cu+Cy Y M, (1)

ueV ueV

where p is a constant factor (configured by Core Chain) that determines how
much voting power each delegated Bitcoin block provides.

We can see from this definition a useful artifact that we will make use of
later:

Fact 1 If all mining powers can be nullified (M, = 0 for all v € V), then
nobody has voting power, even if they stake the native cryptocurrency CORE.
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3.2 SPV Verification on Core Chain

Core Chain must provide a secure way to verify block delegation from Bitcoin.
Since these two chains operating independently, with the Bitcoin protocol even
being unaware of the existance of Core Chain, this is tricky.

To do this, Core Chain uses an SPV client. By only storing Bitcoin headers
on-chain instead of the transactions themselves, Core Chain avoids the massive
storage overhead of full Bitcoin blocks. Instead, the system expects a Merkle
proof that the coinbase transaction that delegates voting power to a validator,
is indeed included in a Bitcoin block in the current epoch.

Our attack allows an attacker to forge Merkle proof for non-extant transac-
tions, providing them with a way to delegate Bitcoin blocks to non-legitamate
validators. To do this, the attacker needs to craft a special valid transaction and
make sure it is included as the first transaction after the coinbase transaction in
the Bitcoin block.

When crafting this transaction, the attacker must make sure that its hash
concatenated with the real coinbase transaction hash is a possible serialization
of another, non-existant transaction:

Hash(coinbase_tx || crafted_tx) = Valid transaction serialization.

To understand how to craft such transaction, we first need to understand how
a Bitcoin transaction is deserialized by the Core Chain smart contract. Bitcoin
transactions are serialized the following way:

— 4 bytes: version
— >1 bytes: input count
Each input includes:
e 32 bytes: previous output hash
e 4 bytes: previous output index
e >1 bytes: script length
(variable size) script
e 4 bytes: sequence
— >1 bytes: output count
Each input includes:
e 8 bytes: Value
e >1 bytes: script length
e (variable size) script
4 bytes: locktime

The bug The bug in Core Chain that allows our attack is that there is minimal
verification for the serialized transaction. If the transaction fails more complex
verifications, the block is simply delegated to no one instead of raising an error.

Mainly, the verification is only that the lengths match the amount of data
expected [9]. Specifically, we must provide at least one input and one output. By
carefully setting input count, output count, and scripts length, we can produce a
valid 64-byte structure that Core Chain accepts, without needing the content to
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make sense. This means we only need to control a few key bytes in the serialized
transaction — we can use a single input with a script length of 0 and a single
output with a script length of 4 as a possible solution. We can verify that the
resulted transaction length is indeed 64:

[Total: 4] 4 bytes: version
[Total: 5] 1 byte: input count
[Total: 5] A single input:
[Total: 37] 32 bytes: previous output hash
o [Total: 41] 4 bytes: previous output index
e [Total: 42] 1 byte: script length
o [Total: 42] 0 bytes: script
o [Total: 46] 4 bytes: sequence
[Total: 47] 1 byte: output count
— [Total: 47] A single output:
o [Total: 55] 8 bytes: Value
o [Total: 56] 1 bytes: script length
e [Total: 60] 4 bytes: script
[Total: 64] 4 bytes: locktime

This solution requires the attacker to control only 4 bytes (32 bits) in the
serialized transaction — the input length, output length, and input and output
script lengths. Thus, one out of ~4B randomly crafted transactions would work
for the exploit, easily enumerated by a computer.

Thus, the complete flow will be as following;:

1. Randomly generate a valid Bitcoin transaction (e.g. by randomizing the
locktime).

2. Compute the resulted serialized transaction, by hashing the crafted transac-
tion and concatenating to the hash of the predicted coinbase transaction.

3. Repeat until the resulted hash has a single input with an empty script and
a single output with 4 bytes of script.

4. Send the crafted transaction to Bitcoin, for it to be included as the first
non-coinbase transaction.

5. Send the 64-byte hash as a coinbase transaction to Core Chain, delegating
the block to no one.

Outcome The net effect of the exploit is to create a “fake coinbase transaction”
that delegates voting power to no real validator. Repeating this for all blocks in
the epoch will nullify the delegated proof of work from all validators, which as
we saw in Eq. , means no validator will have any voting power.

Its important to note that the attack requires the attacker to accurately
predict the contents of the coinbase transaction, which can be tricky - but it is
not random and thus not cryptographically secure. Over a long period of time,
it is within reason that an attacker will successfully execute this attack.
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4 Discussion

A number of mitigations for the Bitcoin Merkle design issue have been proposed
in prior work ([I3]), many of which avoid modifying Bitcoin itself. One mitigation
is to simply verify the transaction is serialized to more than 64 bytes in length.
Given that valid 64-byte Bitcoin transactions are extremely rare under standard
checks, a light client can safely assume fraud when encountering such data.

Another possible mitigation is to additionally include a proof for the right-
most transaction. If the number of transactions is not a power of two, the right-
most transaction is duplicated in the Merkle tree, thereby revealing the tree’s
actual depth. Yet, its hard to guarantee that the tree is never a perfect power-
of-two without a protocol-level restriction.

While such non-forking solutions address immediate threats at the SPV client
layer, they do not eradicate the underlying design flaw from the Bitcoin protocol.
In principle, a future soft-fork or hard-fork could insert explicit markers or length
constraints, ensuring that internal nodes can never be misconstrued as leaf nodes.
However, any modification to Bitcoin’s consensus layer is inherently contentious,
and the ecosystem has historically been conservative about protocol changes.

Despite the hardships, we encourage to consider a fork as the only viable
solution. As the ecosystem grows with newer projects allocating large capital,
we cannot trust developers to be aware of all of Bitcoin’s faults and mitigate
them. This is true for Bitcoin in particular, since it is considered the most mature
and secure blockchain by many, as evident by this specific vulnerability being
found in multiple applications.

4.1 Conclusions

In this paper, we revisited a known but under-acknowledged flaw in Bitcoin’s
Merkle tree structure, showing how it can be leveraged to craft invalid transac-
tion proofs in SPV contexts. By studying the real-world example of Core Chain,
an EVM-compatible blockchain that delegates validator power based on Bitcoin
blocks, we demonstrated a tangible exploit: forging coinbase inclusion to nullify
all legitimate validator power.

The broader lesson is that cryptographic building blocks, while powerful,
require careful attention to data formatting and structural constraints. As the
industry continues to build multi-chain ecosystems, vigilance is needed to en-
sure that mistakes are fixed (especially in mature and trusted blockchains like
Bitcoin), and do not threaten large-scale capital.
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