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Abstract. Attribution tags form the foundation of modern cryptoasset
forensics. However, inconsistent or incorrect tags can mislead investi-
gations and even result in false accusations. To address this issue, we
propose a novel computational method based on Large Language Mod-
els (LLMs) to link attribution tags with well-de�ned knowledge graph
concepts. We implemented this method in an end-to-end pipeline and
conducted experiments showing that our approach outperforms base-
line methods by up to 37.4% in F1-score across three publicly available
attribution tag datasets. By integrating concept �ltering and blocking
procedures, we generate candidate sets containing �ve knowledge graph
entities, achieving a recall of 93% without the need for labeled data. Addi-
tionally, we demonstrate that local LLM models can achieve F1-scores of
90%, comparable to remote models which achieve 94%. We also analyze
the cost-performance trade-o�s of various LLMs and prompt templates,
showing that selecting the most cost-e�ective con�guration can reduce
costs by 90%, with only a 1% decrease in performance. Our method not
only enhances attribution tag quality but also serves as a blueprint for
fostering more reliable forensic evidence.
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1 Introduction

Attribution tags, which link pseudo-anonymous cryptoasset addresses to iden-
tifying information about real-world entities and services (e.g., cryptoasset ex-
changes), form the foundation of modern cryptoasset forensics [26]. Over the
past decade, a multibillion-dollar industry has emerged, providing blockchain
tracing tools for law enforcement investigations. These tools allow users to �fol-
low the money�, ultimately leading to the identi�cation and potential convic-
tion of perpetrators. As cryptoassets have gained increasing relevance across
various crime sectors, these tools are now used in investigations related to ran-
somware [19, 30], sextortion [31], and malware [13]. Attribution tags have also
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been employed to train machine learning models for automatically categorizing
service providers, such as exchanges [13, 15, 25, 44], miners [15, 25, 44], and ICO
wallets [25, 44]. Moreover, these models are used to classify addresses or trans-
actions as illicit [1,4,18,22,25,42,44]. Consequently, the accuracy of attribution
tags becomes a critical success factor in all these application domains.

Imprecise or incorrect tags can mislead investigations, result in inaccurate
model predictions, or, in the worst case, lead to false accusations. As a result,
the concept of attribution tag quality is gaining increased attention, especially
as the scienti�c validity of crypto-tracing techniques is being more frequently
questioned and scrutinized [3]. As with any digital forensic investigation that
forms the basis for legal decisions, the collected evidence must be reliable [10],
since poor data quality can lead to incorrect conclusions. Ensuring high data
quality also guarantees that the methodologies used in digital forensics can be
consistently tested and veri�ed.

Since attribution tags originate from and are often shared among multiple
stakeholders, data consistency becomes a critical aspect of data quality. A key
challenge, for instance, is the inconsistent referencing of real-world entities across
di�erent parties [10,13]. For example, one party might refer to a speci�c exchange
as btc-e, while another uses btc-e.com. While a human can easily recognize that
both tags refer to the same entity, di�erent tracing tools may interpret them
as referring to two distinct entities. To harmonize their representation, reuse,
and interpretation in forensic investigations or machine learning tasks, a suitable
data format and a computational approach are needed to automatically eliminate
potential data inconsistencies.

Given the semantic nature of this practical problem, knowledge graphs o�er
an e�ective solution. They represent entities as identi�able semantic concepts
rather than plain strings and are widely used in search engines [14] and large
knowledge bases [39]. The process of linking data to these well-de�ned entities is
known as record linkage [9] or entity linking [36]. However, existing approaches
often rely on heuristics or heavily labeled, domain-speci�c training datasets,
which are not readily available in the context of cryptoasset attribution tags.

Therefore, in this paper, we present a novel computational approach based
on Large Language Models (LLMs) that enables the linking of attribution tag
datasets to well-de�ned knowledge graph concepts without requiring domain-
speci�c �ne-tuning. We implemented this approach by integrating several cutting-
edge techniques � such as �ltering, blocking, and LLMs � into an end-to-end
pipeline. Our experiments, conducted on three datasets, demonstrate that:

1. Our end-to-end entity linking approach outperforms baseline methods across
all three datasets, achieving up to a 37.4% improvement in F1-scores.

2. BM253 blocking and related-concept �ltering reduce the number of candi-
dates per tag to 5, with a recall of 93%, without requiring labeled data.

3. GPT-4o-based candidate selection achieves a 94% F1-score, while Mistral
7B-Instruct, which can run locally, achieves a 90% F1-score.

4. Using the most cost-e�ective prompt template reduces costs by 90%, with
only a 1% drop in performance.
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Our method not only enhances the quality of attribution tags but also seeks to
inspire broader e�orts toward improving data quality, ensuring accurate and reli-
able evidence in forensic investigations. To ensure reproducibility, we have made
our code and datasets publicly available in the following GitHub repository:
https://github.com/ravice234/cryptoasset-attribution-tag-linker.

2 Background

2.1 Attribution Tags

Attribution tags link pseudo-anonymous blockchain objects, such as addresses
or transactions, to real-world actors or events. They provide additional context,
such as the name of a service controlling an address (e.g., btc-e), some form of
categorization (e.g., exchange), and any other information that might be useful
in forensic investigations. Figure 1 illustrates an example in which two distinct
attribution tags originating from di�erent sources reference the same cryptoasset
address 0x123 and describe the same real-world actor, a well-known cryptoasset
exchange. One can observe that, despite describing the same entity, the attri-
bution tag data records the name (btc-e vs. btc-e.com) and categorize the
exchange di�erently (Exchange vs. Service).

Attribution Tag 1

btc-e
Exchange
0x123

Attribution Tag 2

btc-e.com
Service
0x123

references references

Address

0x123

Fig. 1. Attribution Tag Example. Two attribution tags referencing the same cryp-
toasset address 0x123 owned by the real-world entity BTC-e.

Attribution tag data quality issues can occur at various levels [16]: technical
heterogeneities, such as di�erent data formats, can impede uniform processing;
syntactic heterogeneities, like the use of di�erent encoding schemes, can hinder
uniform interpretation; and semantic heterogeneities, such as the use of di�erent
names to denote the same real-world concept (synonyms, homonyms, hypernyms,
etc.), can lead to inconsistent interpretations. In this paper, we primarily focus on
resolving semantic interoperability issues, assuming that technical and syntactic
issues can be addressed using common data preprocessing procedures.

Introducing knowledge graphs to data management environments has become
a common strategy to deal with semantic interoperability issues. A knowledge
graph de�nes nodes representing real-world entities of interest and semantic re-
lationships between these entities [17]. An example is eBay's product knowledge

https://github.com/ravice234/cryptoasset-attribution-tag-linker
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graph, which allows them to identify if two sellers sell the same products, or if
the products are related otherwise.

Attribution Tag 1

btc-e

Exchange

0x123
btce

service

exchange
BTC-e

RUbtc-e.com

Exchange

:narrower

:category

:prefLabel

:prefLabel

:jurisdiction:url

Knowledge Graph

references
references

Address

0x123

Fig. 2. Linking an Attribution Tag to the Knowledge Graph. Attribution tag
instances are linked to concepts de�ned in the knowledge graph.

The process of linking text mentions to entities in a knowledge graph is called
entity linking [36]. This process can be further broken down into: 1) generating
a subset of entities (candidates) that are most likely to match, and 2) selecting
which, if any, candidate matches to the text mention. Candidate set generation
can be achieved by excluding implausible (�ltering) and clustering similar (block-
ing) entities [29]. The selection of a matching candidate is typically performed
using a decision function learned through machine learning. In this paper, the
term entity linking is used to describe the process of linking tags to a knowledge
graph; while our solution also encompasses techniques that stem from the closely
related problem of linking database records (record linkage, entity matching), for
the sake of simplicity, we will consistently refer to it as entity linking.

2.2 Related Work

Entity linking approaches where tuples are linked to knowledge base entities have
utilized look-up methods [34], embedding comparisons [7], and hybrid approaches
[8]. Record-based entity linking has seen advancements using classical machine
learning [20], deep neural networks [27], and pre-trained language models [23].
In [38], a mixture-of-experts approach was proposed, utilizing the training results
from various data integration matching tasks. For blocking, many state-of-the-
art approaches use deep learning [2,23,37,40]. A simple tf-idf based blocker can
achieve competitive results without training and labeled data as shown in [32].

More recently, researchers started to examine LLMs on data integration tasks.
Studies have evaluated and proposed various models, including GPT-3 [28], Jel-
ly�sh variants [43], and others [33], on tasks such as entity linkage, data imputa-
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tion, and error detection. Di�erent matching strategies for LLMs in detail have
also been explored in [33,41].

Within the speci�c domain of cryptoasset investigations, [13] described a
method for resolving con�icting attribution tags. They use the edit distance to
harmonize strings referring to the same entity. The application of LLMs in the
context of cryptoassets and blockchains has been explored for multiple tasks,
such as detecting anomalous Ethereum transactions [11], auditing smart con-
tracts [5], and identifying discrepancies between smart contract bytecode and
project documentation [12].

In this paper, we go beyond this approach, by linking attribution tag datasets
to well-de�ned knowledge graph concepts using an LLM-based approach.

3 Data

In this section, we present the data that informed the design and implementation
of our approach and was used throughout our experiments.

3.1 GraphSense TagPacks

GraphSense is an open-source cryptoasset analytics platform that provides a cu-
rated collection of over 500,000 publicly available attribution tags. A TagPack
is a data structure used to package and share attribution tags 3. Each tag cor-
responds to a blockhain address and includes a label, several optional �elds,
and categorization information. The categories are drawn from a subset of the
INTERPOL Dark Web and Virtual Assets Taxonomy (DWVA)4, a community-
driven e�ort to de�ne common forms of abuse and entities representing real-world
actors and services within the broader Darknet and Cryptoasset ecosystems.

In addition, GraphSense provides a curated list of 2,862 actors, each repre-
senting a well-de�ned real-world entity within the cryptoasset ecosystem. These
actors encompass a wide range of roles and types in the industry such as cen-
tralized exchanges (e.g., Binance), decentralized �nance platforms (e.g., Aave),
and mixing services (e.g., Tornado Cash). Each actor is assigned a unique ID,
a label, one or more categories from the DWVA taxonomy, and optional �elds
such as a URL or jurisdiction. This enables GraphSense to partially implement
a knowledge graph, o�ering explicit links between entities, which we use as a
ground-truth dataset. In total, 378,550 attribution tags contain such actor links.

Since many attribution tags share the same labels and actor links and we
are only interested in unique records, we �ltered out duplicates, leaving 2,570
unique linked attribution tags. These were split into training, validation, and test
datasets in a 1:30:69 ratio. The training set was used to create few-shot examples,
while the validation set was employed in experiments 1 and 2 to optimize the
individual components. The test set was exclusively used in experiment 3 to
evaluate our approach end-to-end.

3 https://github.com/graphsense/graphsense-tagpacks
4 https://misp-galaxy.org/interpol-dwva/



6 R. Avice et al.

3.2 WatchYourBack Attribution Tags

We utilize the dataset published in [13]. Structurally, these attribution tags are
similar to the GraphSense TagPack, as they also include categories and subcat-
egories. However, their taxonomy is not harmonized with the GraphSense Actor
Taxonomy.

The dataset consists of tags aggregated from various sources, including Graph-
Sense and other shared datasets. To avoid duplicating tags, we �lter out any that
are linked to addresses already present in the GraphSense TagPack database.
From this �ltered set, we manually selected and annotated 126 records, 67 of
which contain an actor link.

3.3 DeFi Rekt Database

The DeFi Rekt database [6] contains over 3,500 events related to crimes involving
cryptoassets. Many of these events involve actors within the ecosystem. Each
event includes a title and optional �elds such as the date of the event, and
funds involved. For our experiments, we randomly sampled 100 records from
events where the loss of funds exceeded 100,000 USD. We manually annotated
these sampled events with actor links. Out of the 100 sampled records, only 32
contained an actor link.

3.4 Dataset summary

Table 1 summarizes the data we used for design and implementation of our
approach and the experiments we conducted. The total number of distinct actors
is lower than the sum of individual datasets due to overlapping actors between
datasets.

Table 1. Overview of the three attribution tag datasets used in this study.

Dataset Samples Actor Links Distinct Actors

GraphSense Tag Pack 2,570 2,570 484
Train 25 25 20
Validation 771 771 198
Test 1,774 1,774 361

WatchYourBack 126 67 58
De� Rekt 100 32 32

Total 2,794 2,669 520

4 Approach

Our approach for linking attribution tags to knowledge graph concepts comprises
two main components, as illustrated in Figure 3: the candidate set generator and
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the candidate selector modules. The candidate set generator reduces the pool of
potential actors in the knowledge graph that may correspond to an attribution
tag by applying �ltering and blocking techniques. Next, the candidate selector
module determines which, if any, of the proposed entities match the attribution
tag. The following sections o�er a detailed explanation of each module.

Attribution
Datasets

Prediction
Actor Knowledge Base

Candidate Set

Prompt Batch

LLM

Candidate Selector

Filtering

Blocking

Candidate Set Generator

Fig. 3. Approach Overview. The candidate set generator �lters potential entities
and the candidate selector module identi�es the matching entity.

4.1 Candidate Set Generator

The goal of the candidate set generator is to reduce the pool of candidates in
the knowledge graph that potentially match a given attribution tag. Since LLM
inference is expensive and pairwise comparison is of order O(nm), where n is
the number of records and m is the number of entities in the knowledge graph,
an approach that minimizes the comparisons is required.

To reduce the overall cost, we limit the entities in each prompt to k candidates
by applying �ltering and blocking techniques, thereby reducing the problem com-
plexity to O(nk), where k ≪ m. Filtering is the process of eliminating incorrect
candidates, while blocking refers to similarity-based clustering that identi�es
likely and unlikely candidates [29].

Filtering The candidate set can be narrowed down when both the attribution
tag and the corresponding knowledge graph entity are associated with cate-
gorization information from the same controlled vocabulary. For example, an
attribution tag might be categorized as �exchange� and a knowledge graph en-
tity as �service�, where the latter represents a semantically broader concept than
the former. When such information is available, as in the GraphSense TagPack
dataset (see Section 3.1), it can be leveraged for �ltering. We de�ne two possible
�ltering methods:

� Same-Concept Filtering : This method excludes actors that belong to a cat-
egory di�erent from the one speci�ed in the attribution tag.
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� Related-Concept Filtering : This approach is more �exible than same-concept
�ltering, as it leverages the taxonomy structure to exclude all actors associ-
ated with concepts unrelated to the attribution tag. Related concepts include
both ancestors and descendants of the original concept, but exclude descen-
dants of ancestor concepts that are not directly related.

Blocking The basic idea behind blocking is to avoid comparing entities that
are unlikely to match, signi�cantly reducing the number of comparisons. This is
done by partitioning the data into smaller subsets (blocks), where entities share
some similarities or common attributes. Inspired by [32], who demonstrate that
simple blocking methods � without requiring machine learning or pre-trained
models � can achieve strong results, we apply two straightforward methods:

BM253 This method is based on the Okapi BM25 [35] that is part of the family
of term frequency-inverse document frequency (tf-idf) scoring functions. We to-
kenize the document and query strings into trigrams as proposed in [2] to allow
for approximate string matching. The overall score for a tokenized document D
with respect to a tokenized query Q is given by:

BM25(D,Q) =

n∑
i=1

idf(qi) ·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl

)
(1)

where f(qi, D) is the frequency of token qi of query q in document D and
avgdl is the average document length in the corpus. The inverse document fre-
quency (IDF) is calculated as:

idf(qi) = log

(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1

)
(2)

We use the standard parameters k1 = 1.5 and b = 0.75 de�ned in the im-
plentation of the rank_bm25 library5.

Overlap3 This method measures the similarity between two strings based on the

overlap |A∩B|
min(|A|,|B|) of their trigram sets A and B.

4.2 Candidate Selector

The candidate selector module takes a set of candidates for each attribution
tag and selects the best matching entity. Technically, this step is implemented
using an LLM. In the �rst stage, the module constructs a batch of prompts,
where each prompt corresponds to an attribution tag and includes all associated
candidates. Optionally, the prompts can include examples (few-shot prompts)
showcasing both matching and non-matching cases. This prompt batch is then
fed to the LLM, which is tasked with either selecting the candidate that best

5 https://github.com/dorianbrown/rank_bm25
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matches the attribution tag or indicating that none of the candidates correspond
to the tag.

Figure 4 shows the template used for this prompting task. It consists of an
extended system message (SYS, SYS+), the few-shot examples (FEW-SHOT),
a task description (TASK), a domain statement (DOMAIN), the input data
(INPUT), the selection question (QUEST), and an extended output format re-
minder (OUT, OUT+).

You are an AI assistant that follows instruction extremely well.
User will give you a question. Your task is to answer as faithfully as you can.
Determine if the attribution tag label refers to any of the listed entities and, if so, to which one.
The attribution tag describes an entity that is related to a blockchain address.
Attribution Tag Label: compound_Pair_ETH_USDC
[0] Compound
[1] Morpho Aave/Compound
[2] Tether (USDT)
[3] BitLaunder.com
[4] CryptoBounty.com
[5] None of the entities above
0

Determine if the attribution tag label refers to any of the listed entities and, if so, to which one.
Attribution Tag Label: curvefinance_UST-StableSwapUST
[0] TrustSwap
[1] Curve Finance
[2] PancakeSwap (AMM, v2, Stableswap)
[3] Zyberswap (AMM,Stableswap)
[4] StableKoi
[5] None of the entities above

The attribution tag describes an entity that is related to a blockchain address.

Does the attribution tag refer to any of the listed entities and, if so, to which one?
Choose your answer from: [0, 1, 2, 3, 4, 5].

Before answering, make sure your answer only contains a number.

SYS
SYS+

FEW-SHOT

TASK
DOMAIN

INPUT

QUEST
OUT
OUT+

Fig. 4. Prompt template. The template used for prompting candidate selection.
It consists of several parts (e.g., SYS, FEW-SHOT, INPUT, etc.) and de�nes the
instructions provided to an LLM to guide its response or generated output.

5 Experiments

5.1 Setup

Models The candidate selector module (see Section 4.2) leverages LLMs, inte-
grating both remote models via the OpenAI API and locally hosted models. For
our experiments, we utilized two remote and six local models, all compatible
with consumer-grade hardware:

� GPT-4o, GPT-3.5 Turbo: These models, hosted by OpenAI, were employed
in their speci�c versions: gpt-3.5-turbo-0125 and gpt-4o-2024-05-13.

� Jelly�sh-7B, Jelly�sh-13B-AWQ : Developed and �ne-tuned for data pre-
processing tasks [43], the Jelly�sh models include a 7B version, based on
Mistral-7B-Instruct-v0.2, and a 13B version, based on OpenOrca-Platypus2-
13B. The 13B model was quantized to �t on consumer-grade GPUs using
Activation-aware Weight Quantization (AWQ) [24].
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� Mistral 7B/7B-Instruct : Both the base and instruction �ne-tuned versions
of the Mistral 7B model, developed by Mistral AI, were evaluated in their
v0.3 release.

� Meta LLama 3 8B / 8B-Instruct : These models, developed by Meta, include
both the base and instruction �ne-tuned versions of the Meta LLama 3 8B
model.

Prompt Con�gurations Prompt engineering can signi�cantly in�uence LLM per-
formance in tasks such as entity linking, as demonstrated by [33]. The authors
show that di�erent template structures yield better results with certain models,
while other templates are more e�ective with di�erent models. Building upon
the structure of our base prompt template (see Figure 4), we are testing nine
additional shorter template con�rmations, as detailled in Table 2. In all ten con-
�gurations, we are considering few-shot examples (FEW-SHOT) as optional and
place them before the task description (TASK).

Table 2. Prompt template con�gurations. Each template represents a variation
of the structural elements from our base prompt template in Figure 4.

Template Con�guration

0 SYS, SYS+, TASK, DOMAIN, QUEST, OUT, OUT+
1 SYS, TASK, DOMAIN, QUEST, OUT, OUT+
2 SYS, SYS+, TASK, DOMAIN, QUESTION, OUT
3 SYS, SYS+, TASK, QUEST, OUT, OUT+
4 SYS, SYS+, TASK, DOMAIN, QUESTION
5 TASK, DOMAIN, QUEST, OUT, OUT+
6 SYS, TASK, QUEST, OUT
7 TASK, QUESTION, OUT, OUT+
8 SYS, TASK, QUEST
9 TASK, QUEST

Hardware All experiments are conducted on an AWS g5.xlarge instance equipped
with 16 GB of RAM, 4 vCPUs powered by a second-generation AMD EPYC
processor, and an NVIDIA A10G Tensor Core GPU with 24 GB of VRAM. For
all models, we set the temperature to 0. Local models are run using vLLM [21],
an LLM serving system, with the max_num_of_seq parameter set to 128 and
enable_prefix_caching to true.

5.2 Experiment 1: Candidate Set Generation

The goal of this experiment is to evaluate di�erent �ltering and blocking tech-
niques (described in Section 4.1) and �nd an appropriate candidate set size. We
run the experiment on the GraphSense Tag Pack validation dataset on candidate
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set sizes (k) of 1, 5, 10, and 25. The task is to predict the correct actor for each
sample within the k candidates by comparing the tag label with the actor label,
e.g., btc-e.com with BTC-e. To evaluate the performance of combined �lter-
ing and blocking techniques, we compute the ratio of attribution tags for which
the correct actor link is included among the k candidates. This metric is often
referred to as top-k accuracy. However, since each attribution tag has exactly
one correct actor link, the proportion of correctly recovered actor links, recall,
is equivalent in this context. Following prior works [29,32] on blocking methods,
we refer to this metric as recall. Note that in this scenario, precision depends
solely on k and recall, and thus does not provide additional information.

Table 3. E�ectiveness of candidate set generation. Recall of candidate set gen-
eration for di�erent candidate set sizes (k), blocking (BM253, Overlap3), and �ltering
(same-concept, related-concept) techniques.

Filter Blocker
Recall

k=1 k=5 k=10 k=25

No Filtering
Overlap3 0.467 0.826 0.872 0.904
BM253 0.765 0.899 0.916 0.957

same-concept
Overlap3 0.553 0.739 0.763 0.774
BM253 0.669 0.770 0.776 0.782

related-concept
Overlap3 0.658 0.873 0.914 0.938
BM253 0.811 0.933 0.944 0.955

The results in Table 3 demonstrate that BM253 consistently outperforms
Overlap3 across all candidate set sizes k. Using the same-concept �lter degrades
performance, suggesting that it is overly restrictive. In contrast, the related-
concept �lter produces slightly better candidate sets than using no �ltering. The
candidate sets improve only marginally when their size exceeds 5. Therefore, we
conclude that for our subsequent experiments, k = 5 is the optimal candidate set
size and BM253 is the preferred blocking method. The related-concept �lter will
be applied where relevant. An illustration of the performance on the di�erent
candidate set sizes can be found in Appendix 1

This demonstrates that basic blocking techniques, such as the BM253 blocker,
are e�ective in generating candidate sets with as little as 5 elements, achieving
90% recall, and that related-concept �ltering can further improve recall to 93%.

5.3 Experiment 2: Candidate Selection

The goal of our second experiment is to assess the performance of di�erent
LLM-based candidate selectors using various prompt template con�gurations
(see Table 2) and few-shot examples. We run the experiment on the GraphSense
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TagPack validation set, using the candidate sets generated by the previous ex-
periment. The model's task is to select the correct actor for each attribution
tag from the candidate set if present, otherwise to predict that no candidate
matches. The model selects a candidate by responding with the corresponding
number, as illustrated in Figure 4. Invalid responses are classi�ed as no match,
following the guidelines of [28,33]. We treat the task as a multiclass classi�cation
problem and evaluate the models using accuracy and macro-averages for recall,
precision, and F1-score.

Table 4. Candidate Selector results on the GraphSense TagPack validation set, show-
ing recall (R), precision (P), F1-score (F1), and accuracy (Acc.) for each model's
top-performing template (T). Best performance is in bold, second best is underlined.

Model
Zero-Shot Five-Shot

T R P F1 Acc. T R P F1 Acc.

GPT4o 1 0.907 0.919 0.910 0.953 7 0.939 0.940 0.939 0.983
GPT3.5 7 0.536 0.573 0.535 0.499 9 0.929 0.928 0.927 0.951
Jelly�sh 7B 0 0.804 0.802 0.797 0.847 3 0.876 0.870 0.869 0.946
Jelly�sh 13B 6 0.568 0.588 0.571 0.708 2 0.797 0.790 0.789 0.879
Llama 3 8B 0 0.744 0.743 0.738 0.827 0 0.868 0.859 0.861 0.947
Llama 3 8B-Inst 7 0.729 0.731 0.725 0.844 3 0.883 0.874 0.875 0.955
Mistral 7B 1 0.737 0.732 0.728 0.850 8 0.829 0.813 0.812 0.908
Mistral 7B-Inst 7 0.711 0.702 0.698 0.799 0 0.913 0.900 0.903 0.958

The results in Table 4 indicate that GPT-4o outperforms all other methods in
both zero-shot and �ve-shot scenarios. Notably, while GPT-3.5 has the weakest
performance with zero examples, it achieves the second-highest F1-score when
�ve examples are included in the prompt. The Jelly�sh 7B model ranks second in
zero-shot F1-score, suggesting that its �ne-tuning on diverse data preprocessing
tasks positively impacts the entity selection task. In contrast, the Jelly�sh 13B
model underperforms compared to the other local models, despite having more
parameters, con�rming the �ndings of [43] that it performs worse on unseen tasks
than its 7B counterpart. Among the local models, Mistral 7B-Instruct performs
the best, achieving an F1 score of more than 90%.

In Figure 5, we can see that the template choice can have a signi�cant e�ect
on some models. For example, GPT-4o zero-shot results are close to zero on
some templates, while on others, they achieve F1-scores of over 90%. The Meta
Llama 3 base model has the most stable performance and is the only model
that achieves more than 60% F1-score on every template with zero examples.
An overview of all models can be found in Appendix 2.

Cost Analysis Choosing more extensive template con�gurations and introduc-
ing few-shot examples increases the size of the prompts, and thus makes inference
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Fig. 5. Model Performance with di�erent Templates. GPT-4o's zero-shot re-
sults vary signi�cantly across di�erent templates, while Llama-3 8B has a more stable
performance.

more expensive. For remote models, we de�ne cost in $USD based on the Ope-
nAI API usage policy6 that charges based on the prompt size. The current rates
are ($5,$15) per 1 million input/output tokens for GPT-4o and ($0.5,$1.5) for
GPT-3.5 Turbo.

For local LLMs, we use inference time as the cost metric. We de�ne inference
time as the time taken by the model to process all prompt batches and generate
the responses, which includes tokenization but does not include the loading of
the weights or any prompt pre/post-processing. We calculate the average run
time of �ve runs for each template in both zero- and �ve-shot settings.

To determine which models and what con�gurations provide the best cost-
performance value we �rst de�ne value as:

VT/S = F1T/S ∗ (1− C̃T/S) (3)

where T/S is the template/shot con�guration and C̃ = C−min(C)
max(C)−min(C) is the

normalized cost. We normalize the cost for remote and local models separately.
In Table 5 we see that we can save over 90% on costs when using GPT-3.5

with template 9 while only losing 1% on the F1-score compared to the best GPT-
4o con�guration. The template con�guration for local LLMs has less cost impact
because we can reduce redundant computation to encode the large shared pre�x
of the prompts by using vLLM pre�x caching [21]. However, using Mistral-7B-
Inst with template 9 instead of template 0 still reduces inference time by more
than 30%, with a performance decrease of less than 0.5%.

This experiment shows LLM-based entity linking is e�ective, with GPT-4o
achieving a 94% F1-score. Aditionally, LLM's that can run locally in a consumer-
grade GPU perform well, reaching 90% F1-score. Furthermore, we show that
cost-performance analysis can yield a 90% cost reduction for only 1% of perfor-
mance decrease.

6 https://openai.com/api/pricing/
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Table 5. Template/Shots (T/S) con�guration and cost and performance di�erences
(∆C/F1) between models with the highest F1-score and the one with the best cost-
performance value (V). Local and remote models are compared separately

Model T/S F1 C V ∆(%)
C F1

GPT-4o 7/5 0.939 $3.359 0.116
GPT-3.5 9/5 0.927 $0.256 0.876 -92.380 -1.163

Mistral-7B-Inst 0/5 0.903 33.951s 0.659
Mistral-7B-Inst 9/5 0.899 22.777s 0.797 -32.941 -0.390

5.4 Experiment 3: End to End Entity Linking

The goal of this experiment is to test our approach of linking attribution tags to
a knowledge graph end-to-end and compare it to baseline solutions. We run the
experiment on the GraphSense TagPack test set, WatchYourBack, and De� Rekt
datasets. All samples pass through the candidate generator, and the resulting
batch of candidate sets are then fed to the candidate selector. For the candi-
date set generator, we employ the BM253 blocker. Additionally, we apply the
related-concept �ltering for the GraphSense dataset, while no �ltering is used for
the other datasets, because their categories are not linked to knowledge graph
concepts. For the candidate selector, we use for each LLM the template that
achieved the best performance in the previous experiment. We follow experi-
ment 2's evaluation method, with the di�erence that a miss by the candidate
set generator is counted as an error. We compare the LLMs with the following
baseline methods:

BM253: We use the top ranking candidate of our BM253 blocker, and decide
based on a threshold if it is a match or not. The threshold of 15 .7238 was
determined by evaluating the model's precision and recall on all top-candidate
scores in the GraphSense TagPack validation set, and selecting the one that
maximizes the F1-score.

UnicornPlus, UnicornPlusFT: UnicornPlus [38] is a DeBERTa-based mixture-
of-expert model that is �ne-tuned for data integration matching tasks. For a fair
comparison, we apply the same candidate set generation process and perform
pairwise matching between attribution tags and their candidates. In case mul-
tiple candidates match, we apply the softmax function on each prediction and
choose the one with the highest probability. Furthermore, we create Unicorn-
PlusFT, a �ne-tuned version of the model. For this, we reshu�e our GraphSense
train and validation sets with a 80/20 training/validation split and train the
model for 10 epochs using the settings proposed in [38].

Table 6 demonstrates that our end-to-end linking approach outperforms base-
line methods across all datasets. Using BM253 blocking and GPT-4o as candi-
date selector, we achieve F1-scores of 79-85%. With Mistral 7B-Instruct, our
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Table 6. Performance of various models on di�erent datasets

Model
GraphSense WatchYourBack DeFi Rekt

F1 Acc. F1 Acc. F1 Acc.

BM253 0.718 0.789 0.495 0.516 0.393 0.510
UnicornPlus 0.667 0.445 0.558 0.651 0.352 0.670
UnicornPlusFT 0.783 0.873 0.542 0.603 0.419 0.610

GPT4o 0.853 0.927 0.801 0.873 0.793 0.930
GPT3.5 0.810 0.881 0.756 0.825 0.691 0.890
Llama 3 8B-Inst 0.814 0.921 0.625 0.746 0.516 0.710
Mistral 7B-Inst 0.821 0.918 0.692 0.786 0.547 0.770

best-performing local candidate selector, F1-scores range from 55-82%. Detailed
results for all models and error type analysis are available in Appendix 3.

This experiment shows that our approach outperforms baseline methods on
all three datasets by up to 37.4% in F1-score. Furthermore, it demonstrates the
generalization capabilities of our approach by achieving F1-scores of over 79%
on all datasets.

6 Discussion and Conclusions

In this paper, we addressed the issue of attribution tag quality, with a particular
focus on data inconsistencies that arise when attribution tags are shared among
di�erent parties. We argue that data quality issues can mislead forensic investi-
gations and even result in false convictions if addresses are labeled incorrectly.
To solve this, we proposed a novel computational approach based on Large Lan-
guage Models (LLMs) that automatically links attribution tags to well-de�ned
concepts in knowledge graphs, addressing the semantic nature of the problem.
We implemented our approach in an end-to-end pipeline and demonstrated that,
when combined with �ltering and blocking techniques, it outperforms existing
methods. Additionally, we showed that pre-trained LLMs running locally on
consumer-grade hardware achieve performance comparable to remote models.
Furthermore, we demonstrated that carefully designed prompts can signi�cantly
reduce costs with only a marginal decrease in performance. Overall, we believe
our approach not only addresses the pressing issue of inconsistent attribution
tags but also has the potential to inspire broader e�orts to improve data quality
in other forensic investigation tools and platforms.

One limitation of our approach is its binding to speci�c application domains;
so far, we lack evidence that our method is generally applicable to all record
linkage problems. However, we believe that a data- and measurement-driven ap-
proach would be valuable for assessing the broader suitability of this method.
Another limitation is the assumption that di�erent parties (e.g., exchanges, in-
vestigators) use the same knowledge graph when exchanging attribution tag
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records. If this is not the case, our approach does not harmonize the data but
merely shifts the problem to a di�erent abstraction level. However, signi�cant
e�orts are being made to harmonize and adopt shared knowledge graphs within
the �eld. For example, the Darkweb and Virtual Assets taxonomy developed by
INTERPOL has been integrated into the Malware Information Sharing Platform
(MISP) Galaxy7. This taxonomy helps categorize and enrich threat intelligence,
with MISP Galaxies organizing related data clusters to describe higher-level con-
cepts such as adversary groups, malware families, and vulnerabilities, simplifying
complex data analysis for organizations.

Future work could include �ne-tuning pre-trained LLMs to the cryptoasset
domain, improving performance by recognizing semantically related terms that
are syntactically di�erent. Additionally, leveraging relationships like hypernyms
and hyponyms in knowledge graphs could re�ne candidate matching. Extending
the approach to automatically categorize cryptoasset addresses based on well-
de�ned categories would also provide a more comprehensive solution.
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Appendix 1

A visual illustration of the candidate set generation performances of the di�erent
blocking and �ltering techniques can be found in Figure 6. We can see that the
recall gain from k = 1 to k = 5 is signi�cant, while subsequent increases in
candidate set size have only a marginal impact.
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Fig. 6. Choosing Candidate Set Size. Recall of candidate set generation for di�er-
ent candidate set sizes (k). The performance gain for all methods visibly slows down
for k > 5.

Appendix 2

A comprehensive overview of all candidate selector model results across each
template can be found in Figure 7. We can see that the zero-shot performance
of the models varies signi�cantly across templates; however, introducing �ve
examples reduces this variance considerably. Interestingly, while GPT-3.5 is in-
e�ective without examples, with �ve examples it achieves the second-highest
F1-score. Also notable is that the zero-shot performance for templates 4, 8, and
9 is lowest, signaling that the output format reminder (OUT) is crucial for good
results without examples.
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Fig. 7. Candidate Selection Experiment: Model performances (F1) across each tem-
plate using no (Zero-Shot) and �ve (Five-Shot) examples in the prompt.

Appendix 3

In our experiments, we treat entity linking as a multi-classi�cation problem and
measure the performance with the macro F1 score and the accuracy, see Table 7.
For the macro F1-score, this means that we calculate each entity's individual F1
score and average them. Consequently, any prediction that is di�erent from the
ground truth is treated equally as an error. In a practical setting, we argue that
errors predicting no entity matches are less problematic than errors linking the
attribution tag to the wrong entity.

Figure 8 shows us the error composition of the di�erent models across all three
datasets. We distinguish between theMissed Entity error from a wrong no-match
prediction and theWrong Entity error with a wrong entity predicted. We can see
that GPT-4o not only has the best performance in terms of accuracy and macro
F1-score but also has less than 1% of wrong entities predicted, with the majority
of the errors coming from missed entities. In contrast, the local LLMs all have
more Wrong Entity than Missed Entity errors. Our best-performing local LLM,
Mistral 7B-Instruct, has, despite better overall accuracy, more Wrong Entity
errors than GPT-3.5.

In Table 8, we identify the three actors most frequently misclassi�ed by each
model. The results are similar across di�erent models, with a few exceptions.
For example, maker appears in the top three only for UnicornPlus, despite being
present in 135 di�erent tags. Notably, none of the models correctly classify any
of the 20 tags associated with 0x as an actor.
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Table 7. Full overview of end-to-end entity linking performance including the results
of all models the three datasets

Model
GraphSense WatchYourBack DeFi Rekt

F1 Acc. F1 Acc. F1 Acc.

BM253 0.718 0.789 0.495 0.516 0.393 0.510
UnicornPlus 0.667 0.445 0.558 0.651 0.352 0.670
UnicornPlusFT 0.783 0.873 0.542 0.603 0.419 0.610

GPT4o 0.853 0.927 0.801 0.873 0.793 0.930
GPT3.5 0.810 0.881 0.756 0.825 0.691 0.890
Jelly�sh 7B 0.799 0.914 0.634 0.746 0.432 0.640
Jelly�sh 13B 0.716 0.842 0.595 0.730 0.478 0.720
Llama 3 8B 0.785 0.917 0.618 0.683 0.440 0.680
Llama 3 8B-Inst 0.814 0.921 0.625 0.746 0.516 0.710
Mistral 7B 0.745 0.887 0.467 0.452 0.327 0.330
Mistral 7B-Inst 0.821 0.918 0.692 0.786 0.547 0.770

Missed Wrong Total

Errors
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Fig. 8. Error analysis. The number of missed and wrongly predicted actor links for
each model in the end-to-end entity linking experiment. The experiment contained
2000 samples from three di�erent datasets.
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Table 8. Overview of the most frequently misclassi�ed actors for each model

Model Actor # Miss Classi�ed # Total Occurences

BM253

aave 121 133
curve 38 128
binance 33 37

UnicornPlus
aave 133 133
maker 128 135
synthetix 122 198

UnicornPlusFT
huobi 51 53
aave 35 133
0x 20 20

GPT4o
0x 20 20
aave 18 133
feiprotocol 10 27

GPT3.5
synthetix 30 198
aave 22 133
0x 20 20

Jelly�sh-7B
aave 29 133
0x 20 20
feiprotocol 10 27

Jelly�sh-13B
aave 52 133
0x 20 20
synthetix 19 198

Llama 3 8B
0x 20 20
aave 20 133
feiprotocol 10 27

Llama 3 8B-Inst
aave 24 133
0x 20 20
feiprotocol 11 27

Mistral 7B
aave 23 133
0x 20 20
curve 19 128

Mistral 7B-Inst
aave 21 133
0x 20 20
feiprotocol 10 27
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