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Abstract. Bitcoin’s security relies on its Proof-of-Work consensus, where
miners solve puzzles to propose blocks. The puzzle’s difficulty is set by the
difficulty adjustment mechanism (DAM), based on the network’s avail-
able mining power. Attacks that destroy some portion of mining power
can exploit the DAM to lower difficulty, making such attacks profitable.
In this paper, we analyze three types of mining power destruction attacks
in the presence of petty-compliant mining pools: selfish mining, bribery,
and mining power distraction attacks. We analyze selfish mining while
accounting for the distribution of mining power among pools, a factor
often overlooked in the literature. Our findings indicate that selfish min-
ing can be more destructive when the non-adversarial mining share is
well distributed among pools. We also introduce a novel bribery attack,
where the adversarial pool bribes petty-compliant pools to orphan oth-
ers’ blocks. For small pools, we demonstrate that the bribery attack can
dominate strategies such as selfish mining or undercutting. Lastly, we
present the mining distraction attack, where the adversarial pool incen-
tivizes petty-compliant pools to abandon Bitcoin’s puzzle and mine for
a simpler puzzle, thus wasting some part of their mining power. Simi-
lar to the previous attacks, this attack can lower the mining difficulty,
but with the difference that it does not generate any evidence of mining
power destruction, such as orphan blocks.

Keywords: Selfish mining · Bribery · Distraction attack.

1 Introduction

Bitcoin [33] was the starting point of the exciting journey into the blockchain
and cryptocurrency era. Despite the introduction of many new cryptocurren-
cies, Bitcoin has maintained the highest market capitalization [1] and remains
the most famous cryptocurrency. Any serious attack that threatens Bitcoin’s
progress not only harms Bitcoin users but also impacts users of other cryptocur-
rencies and blockchain platforms. Although Bitcoin has operated smoothly since
its emergence, the absence of a serious attack thus far does not guarantee that
its security will not be compromised in the future. Since the introduction of
Bitcoin, numerous research papers [5, 16, 17] have analyzed its security and ex-
plored potential attacks [6, 14, 28, 38] that could target it. Identifying potential
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flaws in Bitcoin’s underlying mechanism and studying possible solutions benefit
Bitcoin’s progress while serving as inspiration for new cryptocurrencies.

Several attacks have been introduced in the literature aimed at destroying
the efforts of other miners in producing valid blocks, which we refer to as mining
power destruction attacks. Examples include selfish mining [14, 38], block with-
holding [13, 37], power adjusting withholding and bribery selfish mining [15],
block denial of service (BDoS) [31], undercutting [11], eclipse attack [34], Pitch-
forks [23], and script puzzle distraction attack [43]. While these attacks differ in
their specific methods, they all share the common goal of destroying the mining
power of other miners. The intuition behind the profitability of these attacks is
the principle that mining rewards are distributed among the participating mining
powers in proportion to their contributions to the chain extension. By destroy-
ing another miner’s share, the adversary increases its own relative contributions,
which consequently boosts its revenue. No mining power destruction attacks can
be more profitable than following the honest strategy during the initial difficulty
epoch [19,41]. The adversary must wait for the subsequent difficulty adjustment
mechanism to observe the impact of these attacks on its revenue. In contrast
to attacks such as double spending, where the adversary receives revenue im-
mediately upon a successful attack, mining power destruction attacks must be
continued for at least two weeks (the length of one epoch) to become profitable.

In this paper, we analyze mining power destruction attacks in Bitcoin within
the context of petty-compliant mining pools, referred to as a semi-rational setting.
The analysis of these attacks in a semi-rational setting differs in two important
ways from their analysis in the presence of altruistic mining pools. First, in
semi-rational settings, we cannot naively assume that mining pools will always
follow honest behavior, especially when they are the victims of an attack. As
petty-compliant pools, they may choose to deviate from the honest strategy to
defend against mining power destruction attacks and protect their mining efforts.
Second, an adversarial mining pool in such settings may carry out incentive ma-
nipulation attacks [25], such as bribery, to convince non-victim petty-compliant
mining pools to adopt its desired strategy, thereby increasing the success like-
lihood for its mining power destruction attacks. This potential for incentive
manipulation allows adversarial mining pools even with a limited share of min-
ing power to effectively attack the network. In this paper, we present a selfish
mining analysis from a new perspective and introduce two novel mining power
destruction attacks: bribery and mining power distraction attacks.

Selfish mining attack (Sect. 3): Selfish mining, introduced by Eyal et
al. [14], is a well-studied attack in the context of Bitcoin. Numerous papers [8,14,
19,38,40,50] have analyzed the impact of selfish mining on the adversarial block
ratio and profitability. However, most of these studies assume that, apart from
the adversarial mining nodes, all the remaining mining nodes in the network
follow the honest fork choice rule, meaning they always mine on the longest
chain or the earliest of the longest forks. Carlsten et al. [11] introduced the
concept of petty-compliant mining nodes, highlighting that, in a fork race, these
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mining nodes choose the fork that offers the highest return.1 To the best of our
knowledge, the first analysis of selfish mining in the presence of petty-compliant
mining nodes was conducted by Bar-Zur et al. [9]. They showed that in a semi-
rational setting, the mining share threshold for a profitable deviation from the
honest strategy is reduced.

Despite considering petty-compliant mining nodes, the analysis in [9] is based
on the implicit assumption that each mining node controls only an infinitesimal
share of the total mining power, thereby overlooking the presence of any petty-
compliant mining pools. A mining pool can be viewed as a group of infinitesimal
mining nodes working together. Assuming no petty-compliant mining pools exist,
the analysis can simply presume that, during a fork race, if the adversary places
a bribe on top of the adversarial fork, almost all the network’s mining power
will mine on top of the adversarial fork. This is because the mining nodes that
do not adopt the adversarial fork are only those that own a block in the non-
adversarial fork, with a total mining share that is infinitesimal. However, when
considering the existence of mining pools, the presence of a bribe offered by the
adversary does not guarantee that all the network’s mining power will mine on
top of the adversarial fork. If a mining pool has already mined a block in the non-
adversarial fork, it will continue to mine on top of that fork with its entire mining
power, which can no longer be assumed to be infinitesimal. Figure 1 intuitively
illustrates the mining share distributions between forks in a fork race, in the
altruistic setting, in the presence of infinitesimally small petty-compliant mining
nodes, and in the presence of petty-compliant mining pools.

In this paper, we analyze selfish mining in the presence of petty-compliant
mining pools and examine the effect of mining power decentralization on selfish
mining profitability. Our theoretical and Markov Decision Process (MDP)-based
analysis shows that selfish mining is more destructive in settings where the non-
adversarial mining pools are more decentralized. This suggests that the greater
the gap in mining power share between the adversarial mining pool and the other
pools, the more profitable selfish mining becomes.

Bribery attack (Sect. 4): In the blockchain literature, various bribery
attacks have been introduced for different purposes. These attacks can range
from attempts to censor a single transaction, as seen in [32,44], to efforts aimed
at rewriting the history of blockchain blocks to facilitate a successful double-
spending attack [10, 24, 28, 30]. The former requires a relatively small bribe to
incentivize miners not to include a specific transaction, while the latter necessi-
tates a substantial budget to persuade miners to abandon the longest chain and
mine on top of a block that is deep within the chain. In this paper, we introduce
a novel bribery attack aimed at destroying mining hash power. In our attack,
the adversarial mining pool bribes petty-compliant mining pools to orphan the
blocks of other mining pools, with the sole intention of wasting a portion of their
mining power. Orphaning these blocks can reduce mining difficulty, resulting in
revenue that compensates for the bribe paid. Our bribery attack is similar to self-

1 [11] uses the concept of petty-compliant nodes in the undercutting attack analysis,
overlooking them in the selfish mining analysis.
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(a) Altruistic setting:
αfork
A = αA.

(b) Semi-rational setting with
infinitesimal mining nodes:
αfork
A ≈ 1.

(c) Semi-rational setting with
mining pools: αfork

A = 1− αi.

Fig. 1: Mining share distribution between forks in a block race. The adversarial
block, denoted in red, is published later than the rival block in the block race.
We denote by αA, αi, and αfork

A the mining shares of the adversarial mining pool,
mining pool pi, and all mining nodes extending the adversarial fork, respectively.

ish mining, except that instead of gambling on its own block to orphan another,
the adversary pays a bribe less than the block reward to orphan a block. The
advantage of the bribery attack over attacks such as selfish mining and feather
forking is that it is risk-free for the adversarial pool, meaning the attacker does
not risk losing its block or bribing budget. Additionally, a mining pool with any
arbitrary share can always exploit other pools with a lesser share, making the
attack profitable even for small mining pools.

Distraction attack (App. E): As discussed in the literature [19,41], mod-
ifying the Bitcoin Difficulty Adjustment Mechanism (DAM) to adjust the diffi-
culty based on the total active mining power—both wasted and effective—can
mitigate mining power destruction attacks that generate valid proof of mining
power destruction. For instance, selfish mining and the introduced bribery at-
tack become unprofitable under such a modified DAM, as the orphan blocks
generated during these attacks serve as evidence of mining power destruction.
However, there are other types of mining strategies and attacks discussed in the
literature, such as smart mining [18], coin hopping [20, 22, 26], and distraction
attacks [43], which can destroy mining power without leaving evidence of de-
struction. In smart mining, a miner alternates between being idle and mining
honestly, while in coin hopping, the miner switches between mining on different
networks. Both strategies aim to manipulate and reduce the mining difficulty
level. In distraction attacks, the adversary incentivizes miners to stop mining
the Bitcoin puzzle and instead mine an alternative one. An example of a distrac-
tion attack is the script puzzle [43], where the adversary bribes miners through a
smart contract-based puzzle to divert them from the Bitcoin chain. The goal of
the script puzzle attack is to facilitate a double-spending attack or gain majority
control of the network, which requires both a significant share of mining power
and a substantial bribe (equivalent to six Bitcoin block rewards) for successful
execution. These strategies and attacks can target Bitcoin without leaving any
evidence, making them difficult to mitigate without relying on external trusted
platforms.
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In this paper, we introduce a novel distraction attack that aims to destroy
a portion of mining power without leaving any evidence of power destruction.
In our attack, the adversarial mining pool publishes a Proof-of-Work (PoW)
puzzle with lower difficulty on another platform and incentivizes petty-compliant
mining pools to mine the lower-difficulty puzzle. This attack can be carried out
with minimal bribes, less than the value of a block reward.

2 Preliminaries and System Model

In our system model, time is divided into smaller units referred to as rounds. We
use λ to denote the block mining rate of the network, representing the number
of blocks mined per unit of time. We denote by Revi(t;π) and Costi(t;π) the
revenue and the cost of mining pool pi in round t under strategy π, respectively.
If all the mining pools follow the honest strategy, the average per-round revenue
of the mining pool pi with mining share αi is equal to αi·λR, where R denotes the
block reward. If mining pool pi mines with its whole mining power, its average
mining cost per round is equal to αi ·ci, where ci denotes the average normalized
mining cost of pool pi per round.
Definition 1 (Time-averaged profit). The time-averaged profit (per-round
profit) of pool pi following strategy π is defined as follows:

Profitt
i(π) =

∑t−1
t′=0

(
Revi(t

′;π)− Costi(t
′;π)

)
t

, Profiti(π) = lim
t→∞

Profitt
i(π) .

(1)

We define honest, petty-compliant, and adversarial mining pools as follows.
Definition 2 (Honest mining pool). An honest mining pool is defined as a
mining pool that i) always chooses the longest chain available in its view (in case
of a tie, it chooses the block that was seen first) as its canonical chain to mine
on top of, and ii) once it mines a new block, it immediately publishes the block
to all other mining pools.
To define petty-compliant mining pools, we first define the chain expected return
and semi-rational fork choice rule.
Definition 3 (Chain expected return). Let πC and rC denote the strategy
of mining on top of a given chain C, and its expected return, respectively. The
expected return rC is defined as follows:

rC =

∞∑
t=0

γtRevi(t;πC) , (2)

where γ is a decaying factor set by each mining pool.2

2 The presence of γ in the expected return definition makes it subjective to each mining
pool’s view of profitability. This reflects reality, as some pools prefer immediate
rewards (low γ), while others prioritize long-term profit (with γ close to 1). In our
paper analysis, we assume γ is close to 1 and that petty-compliant pools do not
account for the impact of difficulty adjustment on the chain expected return.
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For a given chain C, we denote by |C| the length of the chain.
Definition 4 (Semi-rational fork choice rule). Let Clong denote the longest
chain available in the view of petty-compliant mining pool pi (if there are multiple
chains of equal length, consider the one that was seen first by the mining pool).
Also, let CHD denote the set of all the chains C in the view of petty-compliant
mining pool pi that satisfy |Clong| − |C| ≤ D. According to the (ϵ,D)-semi-
rational fork choice rule, if there is a chain C∗ ∈ CHD that satisfies the following
conditions:

1. rC∗ ≥ rC for all C ∈ CHD, and
2. rC∗ − rClong > ϵαiR ,

then C∗ is the canonical chain. Otherwise, Clong is the canonical chain.
We refer to ϵ as the incentivizing factor, representing the threshold of normal-
ized loss a mining pool tolerates before deviating from the honest strategy. A
discussion of the parameters ϵ and D, as well as their role in the semi-rational
fork choice definition is provided in App. A.

Definition 5 (Petty-compliant mining pool). An (ϵ,D)-petty-compliant min-
ing pool is defined as a mining pool that i) follows the (ϵ,D)-semi-rational fork
choice rule to select the canonical chain to mine on top of, and ii) once it mines
a new block, it immediately publishes the block to all other mining pools unless
it is incentivized not to do so.

In this paper, petty-compliant pools are restricted to specific strategies defined
for each attack and cannot act arbitrarily.
Definition 6 (Adversarial mining pool). The adversarial mining pool may
arbitrarily deviate from the honest strategy (for example, by delaying the publi-
cation of its blocks) or execute an incentive manipulation attack to induce petty-
compliant mining pools to deviate from the honest strategy.

Definition 7 (Semi-rational environment). An (ϵ,D)-semi-rational envi-
ronment is an environment in which any non-adversarial mining pool is an
(ϵ′, D)-petty-compliant mining pool, where ϵ′ ≤ ϵ. If D = ∞, we simply denote
the environment as the ϵ-semi-rational environment.

System model. We assume our model operates within an (ϵ,D)-semi-rational
environment. The system comprises a set of petty-compliant mining pools, de-
noted by pi for i in 1, 2, · · · , N , alongside an adversarial mining pool denoted
by pA. We denote by αi and αA the mining power share of the ith petty-
compliant mining pool and the adversarial mining pool, respectively, where
αA +

∑N
i=1 αi = 1. Our model assumes a fixed block reward of R; however,

the adversarial mining pool may also place a bribe on top of any block. A dis-
cussion of the limitations of our system model is provided in App. B.

Definition 8 (Normalized bribe). The normalized bribe br is defined as the
amount of bribe divided by the block reward R.

According to Def. 8, a normalized bribe of br implies that the total amount of
the bribe is equal to brR.
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3 Selfish Mining Attack

In this section, we analyze selfish mining in the presence of petty-compliant
mining pools. Selfish mining results in a fork race between the adversarial and
non-adversarial forks, with only one eventually being included in the canonical
chain. The presence of petty-compliant mining pools offers some benefits to an
adversarial pool. During a fork race, the adversary can bribe these pools to mine
on the adversarial fork, boosting its chances of winning. The adversary can use
in-band methods such as whale transactions [28] (discussed in App. C.1) or out-
of-band methods such as smart contracts [30, 45] to bribe miners. It may also
leave transaction fees in mempool as bribes for others [9, 11].

Analyzing selfish mining in the presence of petty-compliant mining pools re-
quires revisiting the selfish mining analysis typically applied to altruistic settings
or semi-rational settings with infinitely many infinitesimal mining nodes. Under
the altruistic assumption, the adversarial mining pool is guaranteed to win the
fork race if its fork is longer than the competing fork. Additionally, if the ad-
versarial pool propagates its fork faster, it increases its chances of winning a
same-height fork race. In semi-rational settings with infinitely many infinitesi-
mal mining nodes, the analysis may assume that the adversary can incentivize
all petty-compliant nodes to abandon the non-adversarial fork with a bribe, as
the mining share of infinitesimal miners in the non-adversarial fork is negligible.

However, the scenarios that can actually occur when selfish mining takes
place in practice, particularly in the presence of petty-compliant mining pools,
may differ significantly from the analyses conducted under the simplified assump-
tions of altruistic and infinitesimal miners. In the presence of petty-compliant
mining pools, the adversary is not necessarily guaranteed to win the fork race
solely based on the length of its fork, the speed at which it propagates its fork,
or even the minimal bribe placed on its fork. Petty-compliant mining pools
select the fork to mine based on its expected return, where the longest, fastest-
propagated, or bribed chain may not always offer the highest expected return.
For instance, consider a fork race between the non-adversarial fork with length
lA and the adversarial fork with length lA > lA. If the petty-compliant mining
pool pi has n > 0 blocks in the non-adversarial fork, although the non-adversarial
fork is shorter than the adversarial fork, pi may still be incentivized to continue
mining on top of the non-adversarial fork to revive its n blocks included in it.
This example suggests that in the presence of petty-compliant mining pools, the
strategy employed by the selfish pool and its profitability differ from those in
altruistic settings or in environments with infinitely many infinitesimal nodes.

3.1 Theoretical Analysis

To analyze the selfish mining attack in the presence of petty-compliant mining
pools, we first introduce metrics to assess the distribution of mining power among
these pools.

Definition 9 (Centralization factor). Let P = {p1, p2, · · · , pN} denote the
set of all mining pools available in the environment. Also, let αpi

denote the
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corresponding mining power share of mining pool pi ∈ P. The centralization
factor, which is denoted by β, is defined as follows:

β =
∑
pi∈P

αpi

2 . (3)

The centralization factor β can take on values in the range of (0, 1), with higher β
values indicating a more centralized network. In a fully decentralized network, β
approaches 0. Within a network where the maximum mining share of its mining
pools is denoted by α, the centralization factor β is less than or equal to α, with
the upper bound case of β = α occurring when all mining pools possess a mining
share exactly equal to α.

Definition 10 (Residual centralization factor, Pool advantage). Let Pi =
{p1, p2, · · · , pN} \ {pi} denote the set of all mining pools excluding mining pool
pi whose mining power share is denoted by αpi

. Also, let αpj
denote the corre-

sponding mining power share of mining pool pj ∈ Pi. The residual centralization
factor w.r.t. mining pool pi, which is denoted by βi, is defined as follows:

βi =

∑
pj∈Pi

αpj
2

1− αpi

. (4)

The mining advantage of pool pi is defined to be 1− βi.

In the following, we demonstrate that a mining pool with a lower residual central-
ization factor (i.e., higher mining advantage) has a higher chance of conducting
a successful selfish mining attack. To get the intuition of why pool advantage is
defined as above, we first review the following lemma.

Lemma 1. Consider a fork race within an ϵ-semi-rational environment, where
the length of both semi-rational and adversarial forks is equal to 1, and a nor-
malized bribe (see Def. 8) of br = ϵ is available on top of the adversarial fork.
The probability of the event that the next block is mined on top of the adversarial
fork is equal to the mining advantage of the adversarial mining pool.

The proof of Lemma 1 is presented in App. C.2. In Def. 12 presented in App. C.3,
we introduce a simple selfish mining strategy πselfish suitable for an (ϵ,D = 1)-
semi-rational environment. As already discussed, strategies designed for an al-
truistic environment cannot be easily applied in a semi-rational setting. The out-
come of each action that the adversarial mining pool takes in the semi-rational
environment must be evaluated from the perspective of all petty-compliant min-
ing pools. The following theorem examines the effect of the adversarial central-
ization factor on the profitability of strategy πselfish.

Theorem 1. Assume an (ϵ,D = 1)-semi-rational environment3 in which the
mining share of each pool, excluding the adversarial pool, is less than 0.4302. In
3 D = 1 implies that the best chain in a mining pool view is a chain that is at most

one block shorter than the longest chain.
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this environment, the selfish mining strategy πselfish for an adversarial mining
pool with mining share αA and residual centralization factor βA can dominate
the honest mining if the following inequality holds:

βA <
αA − ϵ(1− αA)

2

(1− αA)(1− ϵ)
. (5)

The proof of Thm. 1 is presented in App. C.5. The assumption that the mining
share of each non-adversarial mining pool is less than 0.4302 ensures that if an
(ϵ,D = 1)-petty-compliant mining pool has a single block in a fork that lags
behind the longest fork by one block, it is incentivized to abandon its fork and
adopt the longest fork (Lemma 2).

Note that strategy πselfish is not the optimal selfish mining strategy that an
adversarial mining pool can follow in an (ϵ,D = 1)-semi-rational environment.
The main goal of Thm. 1 is to show that a mining pool with a lower residual
centralization factor has a higher chance of successfully executing a selfish mining
attack. This implies that the profitability of selfish mining in a semi-rational
environment depends not only on the mining share of the adversarial pool but
also on the distribution of mining power among the remaining mining pools.

Corollary 1. Let P1 and P2 denote the first and second mining pools with the
highest mining share in the network, whose corresponding mining shares are
denoted by α1 and α2, respectively. Then, we can obtain the following statements
for an ϵ-semi-rational environment:

– For ϵ > 0, selfish mining dominate honest mining for mining pool P1 if
α1

1−α1
> α2 + ϵ(1− α1 − α2).

– For ϵ = 0, selfish mining always dominate honest mining for mining pool P1.

The proof of Cor. 1 is presented in App. C.6. According to Cor. 1, selfish mining
is the dominant strategy for the largest mining pool if the network incentivizing
threshold ϵ is less than the difference between the mining shares of the largest
and the second largest mining pools. An important consideration in the litera-
ture on selfish mining is the minimum threshold of mining power required for a
profitable attack. Perhaps the most well-known example is that, in an altruistic
setting, a miner with a normal communication capability needs at least 25% of
the network’s mining power to successfully execute selfish mining [14]. These
thresholds might suggest that if no mining pool holds a share above the thresh-
old, selfish mining cannot threaten the network. However, Thm. 1 and Cor. 1
show that in practice, where multiple mining pools aim to maximize their pay-
offs, mining share alone is not the only factor determining the threat of selfish
mining. The distribution of mining power among pools and the gap between their
shares also play a critical role. Even if all mining pools hold less mining power
than these well-known thresholds, a pool with a sufficiently large gap between
its share and that of others can still find selfish mining profitable.

We define the ϵ-selfish mining advantage of the adversary as the right-hand
side of inequality (5). According to Thm. 1, selfish mining dominates honest
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(a) Largest mining pool (b) Second largest mining pool

Fig. 2: Periods of profitable selfish mining. According to Thm. 1, selfish mining
becomes more profitable than honest mining when the selfish mining advantage
of a mining pool (defined as the right-hand side of inequality (5)) surpasses its
residual centralization factor (defined in Def. 10).

mining if the adversary’s ϵ-selfish mining advantage exceeds its residual central-
ization factor. The mining power distribution for the first 8 months of 2024 is
presented in Table 1 in App. C.7 [3]. Figure 2 depicts both the centralization
factor and the ϵ-selfish mining advantage for the largest and second-largest min-
ing pools over the months from December 2022 to August 2024. To generate
Fig. 2, we used data on the number of blocks mined by the respective pools dur-
ing these months to calculate their corresponding mining shares for each month.
This figure illustrates in which months selfish mining could be considered prof-
itable based on different values of the network incentivizing factor. As shown in
Fig. 2a, selfish mining is always the dominant strategy for the largest pool, even
with a high incentivizing factor of ϵ = 0.3. If we assume ϵ = 0, as can be seen in
Fig. 2b, selfish mining is also the dominant strategy for the second-largest pool.
However, as the incentivizing factor increases, some months are excluded from
the profitable selfish mining period.

In App. C.8, we present our MDP-based implementation, available at [2],
to derive the optimal selfish mining strategy in the semi-rational setting. In
App. C.10, we discuss the duration of the initial financial loss associated with
selfish mining and the cost incurred by the adversarial mining pool during this
period.

4 Bribery Attack

Based on the selfish mining results from our MDP implementation presented
in Table 4, the profitability of selfish mining drastically decreases as a pool’s
mining share decreases. The main reason for the marginal profitability of selfish
mining for smaller pools is that, in selfish mining, an adversary is gambling on
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its own blocks, with no guarantee of winning the fork race. In other words, when
an adversary withholds a block to initiate a fork race, it either collects the block
reward R or loses it entirely. For larger mining pools, the probability of winning
the fork race is high, making selfish mining profitable. However, smaller pools
face a significantly higher risk of losing the block reward in the fork race. As a
result, small mining pools prefer not to initiate a fork race unless they know the
competing mining pool in the fork race is also small.

Knowing that selfish mining is a marginally-profitable mining power destruc-
tion attack for smaller pools, this section introduces a novel bribery attack that
(similar to selfish mining) aims to waste a portion of the network’s hash power.
However, unlike selfish mining, this bribery attack is risk-free for the adversary
and is not limited to times when the adversary has mined a block, thereby al-
lowing the adversary to increase its profitability. In this attack, an adversarial
mining pool pays a bribe to any other mining pool that can orphan a specific
block targeted by the adversarial pool. In other words, the adversarial pool in-
centivizes petty-compliant mining pools to orphan a block mined by another
mining pool. The profitability of the bribery attack is based on the same princi-
ple as selfish mining. In both of these attacks, the adversary aims to waste part
of the network’s hash power to exploit the difficulty adjustment mechanism,
thereby reducing mining difficulty. The key difference is that in selfish mining,
the adversarial pool uses its own blocks to carry out the attack, whereas in the
bribery attack, it uses its budget to incentivize other mining pools to conduct
the attack. The bribery attack offers two key advantages over selfish mining.
First, it is risk-free for the adversary, as the bribe is only paid to collaborating
pools upon successfully orphaning a block. Second, it can be executed by pools
with small mining shares, enabling them to exploit weaker pools.

Definition 11 (Target and rival blocks). Let B1 represent the head of the
canonical chain that is mined on top of block B0. Additionally, suppose an ad-
versarial mining pool offers a bribe for publishing a block B′

1 on top of B0, where
B′

1 differs from B1. In this case, B1 and B′
1 are referred to as the target block

and the rival block of a bribery attack, respectively.

When an adversarial mining pool targets a block B1 for a bribery attack, it is
not guaranteed that a rival block will always be mined for the target block B1.
If no rival block is mined, the attack fails. However, if a rival block B′

1 is mined
for the target block B1, the attack succeeds. In a successful bribery attack, both
the target and rival blocks undergo a fork race. Note that the success of this
bribery attack is independent of the outcome of the fork race, as neither of the
blocks involved in the fork race is adversarial. Since only one block between the
target and rival blocks can be included in the canonical chain, the orphaning of
one block is definite, implying that the occurrence of the fork race is enough to
consider the attack successful. The following theorem determines the maximum
bribe the adversary can spend on the bribery attack while keeping it profitable.

Theorem 2. Consider an adversarial mining pool with a mining share αA that
allocates a normalized bribe br for each target block B, which is payable only
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upon the successful mining of a rival block for block B. Assume k is the average
number of target blocks per epoch for which a rival block is mined under the
bribery attack. The time-averaged profit of the adversarial pool under the bribery
attack exceeds the honest mining profit as long as br < αA, for any value of k.

The proof of Thm. 2 is presented in App. D.1. The idea behind the proof of
Thm. 2 is to demonstrate that for each non-adversarial block that gets orphaned,
the adversarial mining pool receives an additional revenue of αAR on average.
Therefore, if the bribe spent on orphaning each non-adversarial block is less than
αAR, the adversarial mining pool can still earn a profit.

The question that arises is how the adversary can effectively use this bribe
budget to incentivize other petty-compliant pools to mine a rival block for a
target block. In the following section, we introduce a bribery attack and analyze
it in the setting where all mining pools are aware of which pool has mined the
target block B. Once a mining pool mines a block, it can reveal its identity
in the coinbase transaction. According to the statistical information presented
in [3], the ratio of unknown blocks in the first 8 months of 2024 is less than 8%,
indicating that the majority of mining pools reveal their identity in their blocks.
In App. D.2, we analyze the bribery attack in the setting where the miner of the
target block is unknown.

4.1 Bribery Attack Under the Assumption of Known Miners

In this section, we present a smart-contract-based bribery attack under the as-
sumption that the miners of target blocks are known. App. D.3 discusses a
bribery attack using whale transactions.

Description of Bribery Attack Using Smart Contracts. Let αA represent
the mining share of the adversarial mining pool pA. Assume block B1 denotes the
head of the canonical chain and is mined by mining pool pi with mining share αi.
From the perspective of the adversarial mining pool, block B1 can be considered
a valid target block for the smart contract-based bribery attack if the following
conditions hold: 1) B1 is a non-adversarial block, and 2) αA > αi + 2ϵ. If these
conditions are not satisfied, the attack is not applicable, and the adversarial
mining pool waits for the next block. If block B1 is a valid target block, the
adversarial mining pool proceeds with the bribery attack. Let B0 denote the
parent of the target block B1. The adversarial mining pool deploys a smart
contract and publishes it for all the mining pools. The smart contract stores
three parameters: the hash of block B0 denoted by Hash(B0), the hash of block
B1 denoted by Hash(B1), and a difficulty target denoted by Target that is equal
to the difficulty target of the epoch to which block B1 belongs. The adversary
deposits 2 normalized bribes br1 = αi + ϵ and br2 = ϵ in the smart contract.
Anyone who submits a witness that proves the mining of a rival block Brival
for block B1 can withdraw br1. A valid witness includes a Bitcoin nonce, a
Merkle root MR, a Bitcoin coinbase transaction tx, a Merkle inclusion proof,
and a payout address add in the host blockchain, and satisfies the conditions:



Mining Power Destruction Attacks 13

1. Demonstrates valid evidence of power destruction4:
– A valid rival block is mined on top of block B0:

Hash(Brival) = Hash
(
Hash(B0), MR, nonce

)
≤ Target.

– The rival block differs from the target block: Hash(Brival) ̸= Hash(B1).
2. Includes a payout address that belongs to the compliant miner:

– The coinbase transaction is included in the list of block transactions, i.e.,
a valid Merkle inclusion proof is available that proves coinbase transac-
tion tx is a leaf of a Merkle tree with Merkle root MR.

– The payout address add is included in the coinbase transaction.

If the witness transaction satisfies the conditions above, bribe br1 will be trans-
ferred from the smart contract deposit to the payout address add, and the rival
block hash Hash(Brival) gets stored in the contract as the hash of the rival block.
Anyone who submits a witness that proves the mining of a valid supporting
block on top of the rival block Brival can withdraw br2. The witness verification
is similar to the previous case with the difference that the hash of the parent
block should be equal to Hash(Brival). Note that this smart contract should have
a time lock, after the expiration of which the adversarial mining pool is able
to withdraw the deposits. This is to prevent any loss if the attack fails. During
this attack, the adversarial mining pool follows the following strategy: if no rival
block is published, it mines on top of the target block. Once a rival block is
published, it switches to mining on top of the rival block.

Theorem 3. In an ϵ-semi-rational environment, an adversarial mining pool
with mining share αA is incentivized to conduct a smart contract-based bribery
attack on any target block B if block B is mined by a mining pool with mining
share αi, where αA > αi + 2ϵ.

The proof of Thm. 3 is presented in App. D.4. The proof demonstrates that the
adversarial mining pool must pay a normalized bribe of αi + 2ϵ to incentivize
petty-compliant pools to mine a rival block for a target block mined by a pool
with share αi. Each bribery attack orphans one non-adversarial block, grant-
ing the adversary additional normalized revenue of αA. Thus, if this additional
revenue αA exceeds the bribe αi + 2ϵ, the attack becomes profitable.

According to Thm. 3, assuming ϵ = 0, an adversarial mining pool can per-
form a bribery attack on blocks mined by any mining pool whose mining power
is less than the adversarial pool’s mining share. The bribery attack is similar
to the undercutting attack introduced in [11]. The key difference is that in un-
dercutting, the adversarial mining pool uses its own block to undercut a target
block. However, in the bribery attack, the adversarial mining pool incentivizes
other mining pools to undercut a target block. Note that the undercutting attack
is a subset of the possible actions considered in our selfish mining MDP ana-
lyzer introduced in Sect. C.8. The Markov chain analysis of both the introduced
bribery attack and the undercutting attack in the presence of petty-compliant
pools is presented in App. D.5 and App. D.6, respectively.
4 Verifying the transactions in the rival block is unnecessary. Any user who solves a

new PoW puzzle (not necessarily a valid Bitcoin block) deserves the bribe.
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(a) Petty-compliant mining pools (real-
world mining power distribution).

(b) A single adversarial pool and infinites-
imal petty-compliant nodes.

Fig. 3: The adversarial reward share obtained from different attacks.

Figure 3a, illustrates the percentage increase in reward share for the smart
contract-based bribery attack, the selfish mining attack, and the undercutting
attack, calculated for the 8 largest mining pools, based on the mining distri-
bution in Table 1 and incentivizing factor ϵ = 0. Figure 3b depicts the reward
share that an adversarial mining pool can achieve in the presence of infinitesimal
petty-compliant mining nodes. As can be seen in both Figures 3a and 3b, the
bribery attack can dominate both selfish mining and undercutting in an ϵ-semi-
rational environment when the adversarial mining pool’s share is small. The
higher profitability of the bribery attack can be attributed to two main factors.
First, in the bribery attack, the adversarial mining pool does not risk losing its
blocks. Second, the bribery attack is not limited to the times when the adversar-
ial mining pool has mined a block. In the undercutting attack, once the tip of the
blockchain is a valid target block, the adversarial pool must mine the next block
to successfully undercut the target block. This probability is relatively low, espe-
cially if the adversarial mining pool is small. In contrast, in the bribery attack,
the adversarial mining pool can incentivize all mining pools, except the target
block miner, to undercut the target block. Compared to other bribery attacks
in the literature [10,24,28,30], where double-spent transactions compensate the
adversary, in the introduced bribery attack, the protocol itself compensates the
adversary, eliminating the need for performing deep block reorganizations. Ad-
ditionally, the budget for each instance of the introduced bribery attack is only
a fraction of a block reward, significantly less than the double-spending bribes,
which require several block rewards.

Duration and Cost of the Initial Loss Period. Mining destruction attacks,
including the proposed bribery attack, incur an initial period of financial loss
before the mining difficulty adjusts. During the first epoch of the bribery attack,
the adversary must pay bribes without any immediate increase in revenue per
unit of time. This implies that the adversarial mining pool must allocate a budget
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Fig. 4: The normalized revenue advantage of the bribery attack over time.

to initiate the attack. In Fig. 4, we depict the normalized revenue advantage of
the bribery attack for different real-world mining pools as a function of time.
The revenue advantage is defined as the difference between the attack revenue
and honest mining revenue since the launch of the attack [20]. As shown, during
the first epoch of the attack—lasting longer than the standard 2-week epoch
duration—the revenue advantage decreases, indicating a financial loss for the
adversary. However, after the difficulty adjustment at the end of the first epoch,
the revenue advantage of the bribery attack begins to increase and eventually
becomes positive, indicating profitability.

5 Discussion

Thus far, Bitcoin has not experienced a serious mining destruction attack. This
can be attributed to various factors, including the high required mining share
and the long initial period of loss associated with these attacks. While these
factors may limit mining power destruction attacks, they do not provide a 100%
guarantee that Bitcoin will remain immune to such attacks in the future. For ex-
ample, while a typical selfish mining attack requires a relatively high hash power
(≥ 0.25) [38], conducting these attacks more strategically, such as through the
bribery attack introduced in this paper, can make them feasible even for smaller
mining pools. Additionally, as Bitcoin undergoes more halving events and trans-
action fees become an increasingly important source of rewards, mining destruc-
tion attacks can become more destructive. This shift toward a transaction-fee
era can lower the mining share threshold for a profitable deviation from the
honest strategy, as an adversarial mining pool may be incentivized to risk its
low-fee-valuable blocks to orphan others’ high-fee-valuable blocks. Orphaning
such blocks returns their fee-valuable transactions to the mempool, giving the
adversary an opportunity to claim them by mining the subsequent block. Elimi-
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nating the protocol reward can also remove the initial loss period for the adver-
sary, as stolen fee-valuable transactions can offset the reduced block generation
rate during the first epoch of the attack [11, 39]. This discussion highlights the
importance of analyzing these threats and developing solutions to help Bitcoin
remain secure against such attacks in the future.

Multiple solutions have been suggested in the literature, each with its own
limitations. Some solutions rely on assessing the timeliness of block publication
to detect honest and adversarial behavior [21, 27, 36, 42, 46]. However, beyond
the limitations of these schemes in partially-synchronous and asynchronous net-
works, they cannot effectively mitigate attacks in the presence of rational mining
pools. Note that rational miners choose the fork to mine on based on its return,
regardless of whether the fork is honest or not. There are other solutions that
suggest modifying the current Bitcoin difficulty adjustment mechanism (DAM)
to prevent difficulty reduction during mining destruction attacks [4, 19, 41, 49].
These solutions rely on the existence of an honest minority that reports evidence
of destruction attacks, such as orphaned blocks. This evidence helps the DAM
distinguish between an attack occurrence and a part of the network being offline,
thereby preventing difficulty reduction during the attack. A comprehensive dis-
cussion on the impact of DAM on the profitability of selfish mining and bribery
attacks, as well as modifications to the current Bitcoin DAM to mitigate these
attacks, is presented in App. D.9. However, it is important to note that there
exist certain mining power destruction attacks, such as the distraction attack
introduced in this paper (App. E), that destroy mining power without generat-
ing any evidence. Furthermore, these solutions may limit adversarial profit at
the cost of reducing the block generation rate, thereby penalizing honest miners.
For more information on strategies to counter selfish mining, readers are referred
to [29,35,41,47].

6 Conclusion

This paper discussed how an adversarial mining pool can use various methods to
destroy a portion of the network’s mining power. To execute a mining power de-
struction attack, the adversarial mining pool must invest some resources, which
can be viewed as an initial cost. These resources may include withholding a block
in selfish mining or offering a bribe in a bribery attack. However, this initial cost
can be compensated, as the destruction attack lowers mining difficulty, resulting
in an increased block production rate for the adversarial mining pool. Victims
of destruction attacks can take countermeasures to mitigate them. For example,
hiding their identity as block miners is a simple yet effective strategy. Addi-
tionally, mining pools can collaborate on mutual agreements, such as dividing
larger pools into smaller ones or adopting a more secure difficulty adjustment
mechanism. However, for every wise solution, there may be an equally clever
counterattack.
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A Parameters Involved in Semi-Rational Fork Choice

For ϵ = ∞, the (ϵ,D)-semi-rational fork choice rule is the same as the honest fork
choice rule. The ϵ parameter in the definition of the semi-rational fork choice
rule captures the idea that a mining pool may decide to stick to the honest
strategy up to facing a normalized loss of ϵ. However, once the normalized loss it
incurs by following the honest strategy exceeds ϵ, it may deviate from the honest
strategy. The parameter D in the definition of the semi-rational fork choice rule
represents the maximum length by which the selected chain can be shorter than
the longest chain. We use D to present our theorems and lemmas throughout
the text. The larger the parameter D, the closer we get to modeling a real-world
rational mining pool. However, as D increases, modeling the system becomes
more complex, since the number of actions a petty-compliant mining pool might
consider also increases.

B Our System Model Limitations

In our system model, we assume that all block rewards are fixed, and the ad-
versary can place bribes on some blocks to increase the expected return from
mining on those blocks. However, this model does not accurately reflect the real
world, where blocks can collect varying levels of transaction fees. In Bitcoin,
block rewards come from two sources: the protocol reward and the transaction
fee reward. In the early years of Bitcoin’s introduction, the protocol reward was
much higher than the transaction fees, making the fixed block reward assump-
tion reasonable. However, as Bitcoin undergoes more halving events, the protocol
reward decreases, and transaction fees become the primary source of mining re-
wards. In the new transaction-fee era, different blocks can have varying rewards,
even without bribes being placed on top of them. This can significantly impact
mining power destruction attacks. For instance, in a block race, petty-compliant
mining pools will typically adopt the block that leaves the higher transaction
fee in the mempool, which is usually the block mined earlier. Therefore, a selfish
miner who mines the first block and keeps it secret has a higher chance of win-
ning the block race compared to the miner of the other block in the public fork,
suggesting that these attacks may be more threatening in the transaction-fee era.
Several papers in the literature [8,9,11,39] have analyzed Bitcoin mining destruc-
tion attacks in the presence of altruistic or infinitesimally petty-compliant nodes.
However, studying mining destruction attacks in the presence of petty-compliant
mining pools in the transaction-fee era remains an interesting direction for future
research.

Another assumption in our model is that there is a single adversarial min-
ing pool in the system, while the remaining pools are petty-compliant. This
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limits the strategies of the remaining petty-compliant pools to a predefined set
of actions, implying they cannot respond arbitrarily to the attack. However, in
practice, multiple mining pools may behave adversarially to maximize their pay-
offs. For example, once an adversarial mining pool offers a bribe to launch an
attack, another pool may respond by offering a higher bribe to defend against
the attack. Several papers in the literature have analyzed multi-agent selfish
mining attacks [7,48], although they do not consider bribes and transaction fees.
Analyzing multi-agent destruction attacks in the presence of bribes and within
the transaction-fee era could be another interesting direction for future research.

C Selfish Mining Attack: Supplementary

C.1 Whale Transactions As a Bribe

Once the adversarial mining pool mines its first block in its private fork, it
publishes transaction tx1 in the public transaction pool. If the transaction fee
of tx1 is chosen properly, tx1 would be included in the first block of the public
non-adversarial fork. The adversarial mining pool refrains from including tx1

in its private fork. Once the non-adversarial fork length becomes equal to the
adversarial fork, the adversarial mining pool publishes its private fork along
with transaction tx2 that is only valid if tx1 is not already included in the chain
(both tx1 and tx2 pays out form the same address). The transaction fee of tx2

can be set to ϵR. In this case, the indifferent petty-compliant mining pools get
incentivized to select the adversarial fork since they can include tx2 only in the
block mined on top of the adversarial fork, not the non-adversarial fork.

C.2 Proof of Lemma 1

Proof. Let PA denote the set of all mining pools excluding the adversarial mining
pool. Assume that the single block available in the non-adversarial fork is mined
by petty-compliant mining pool pi ∈ PA, whose mining share is equal to αi. The
probability of this event is equal to αi. Since there is a bribe of ϵR available on
top of the adversarial fork, all the mining pools excluding pi select the adversarial
fork to mine on top of. This implies the only mining pool that is incentivized to
mine on top of the non-adversarial fork is the mining pool pi itself. Therefore,
given that the first block of the non-adversarial fork is mined by the petty-
compliant mining pool pi, the probability that the next block is mined on top of
the non-adversarial fork is equal to αi. Consequently, the total probability of the
event that the next block is mined on top of the non-adversarial fork (denoted
by event E) can be obtained as follows:

Pr(E) =

∑
pi∈PA

αi
2∑

pi∈PA
αi

=

∑
pi∈PA

αi
2

1− αA
= βA, (6)

where αA and βA represent the mining share and the residual centralization
factor of the adversarial mining pool, respectively. The event mentioned in the
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lemma is complementary to event E, and thus, its probability is equal to 1−βA.
□

C.3 Selfish Mining Strategy

In this section, we introduce the selfish mining strategy πselfish, which is suitable
for an (ϵ,D = 1)-semi-rational environment, where the mining share of all mining
pools excluding the adversarial mining pool is assumed to be less than 0.4302.
This assumption is important as it helps us analyze the strategy of a petty-
compliant pool that is under the selfish mining πselfish attack.

Lemma 2. Assume mining pool pi to be an (ϵ,D = 1)-petty-compliant mining
pool. Consider a fork race between forks f1 and f2, each of length l1 = 1 and
l2 = 2, respectively, where the single block on fork f1 is mined by mining pool pi.
The mining pool pi is incentivized to abandon mining on fork f1 to mine on top
of f2 if αi < 0.4302.

The proof of Lemma 2 is presented in App. C.4. Note that in the altruistic
setting, we can always assume that once a mining pool finds its fork shorter than
the adversarial fork, it will adopt the adversarial fork. However, this behavior
is not necessarily followed by a petty-compliant mining pool under the attack.
Lemma 2 shows that, if under a selfish mining attack, an (ϵ,D = 1)-petty-
compliant mining pool with mining share less than 0.4302 finds its one-block
fork shorter than the adversarial fork, it is also incentivized to abandon its fork
and mine on top of the adversarial fork.

Definition 12 (Strategy πselfish). Let lA and lR denote the length of the
adversarial and semi-rational forks, respectively. Strategy πselfish is defined as
follows:

– Assume the initial fork state is (lA, lR) = (0, 0). If a petty-compliant mining
pool mines a new block, the adversarial mining pool adds the semi-rational
block to the head of its chain and continues mining on top of that. Therefore,
the fork state remains in state (lA, lR) = (0, 0).

– Assume the initial fork state is (lA, lR) = (0, 0). If the adversarial mining
pool mines a new block, it keeps the block hidden and does not publish it
to the petty-compliant pools. Therefore, the fork state transitions to state
(lA, lR) = (1, 0).

– Assume the initial fork state is (lA, lR) = (1, 0). If a petty-compliant mining
pool pi mines a new block, a fork race occurs between the adversarial and the
semi-rational blocks, and the fork state transitions to state (lA, lR) = (1, 1).
In this case, the adversarial mining pool publishes its block along with a
normalized bribe of br = ϵ on top of it. As a result of this bribe, all petty-
compliant pools, except pi, mine on top of the adversarial fork, while mining
pool pi continues to mine on top of its own block.

– Assume the initial fork state is (lA, lR) = (1, 0). If the adversarial mining
pool mines a new block, the fork state transitions to state (lA, lR) = (2, 0).
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– Assume the initial fork state is (lA, lR) = (1, 1). If the next block is mined
on top of the semi-rational fork, the adversarial mining pool gives up on its
block and admits the semi-rational fork as the canonical fork. Therefore, the
fork state transitions to state (lA, lR) = (0, 0). In this case, the adversarial
mining pool retracts its bribe and avoids incurring the bribe cost.

– Assume the initial fork state is (lA, lR) = (1, 1). If the next block is mined
on top of the adversarial fork, the length of the adversarial fork exceeds that
of the semi-rational fork by one block. In this case, we argue that all mining
pools adopt the longer adversarial fork and mine on top of it. For a petty-
compliant pool pj that is not the miner of the single block in the semi-rational
fork (pj ̸= pi), it is evident that it adopts the longer adversarial fork, as
there is no incentive to mine on top of the shorter semi-rational fork owned
by another pool. According to Lemma 2 and the assumption αi < 0.4302,
even the petty-compliant mining pool pi, which mined the single semi-rational
block, is incentivized to abandon its block and adopt the adversarial fork as the
canonical fork. Therefore, the fork state transitions to state (lA, lR) = (0, 0).
Note that, in this case, the bribe becomes payable only if the adversarial fork
is extended by a non-adversarial block.

– Assume the initial fork state is (lA, lR) = (2, 0). If a petty-compliant mining
pool pi mines a new block, the adversarial mining pool publishes its 2 hidden
blocks. Similar to the previous case, according to Lemma 2 and under the
assumption of αi < 0.4302, the petty-compliant mining pool π gives up on its
block and admits the adversarial fork as the canonical fork. Therefore, the
fork state transitions to state (lA, lR) = (0, 0).

– Assume the initial fork state is (lA, lR) = (2, 0). If the adversarial mining
pool mines a new block, the adversarial mining pool publishes its first hidden
block and remains in the state (lA, lA) = (2, 0). 5

C.4 Proof of Lemma 2

Before proving Lemma 2, we first review some useful lemmas. To calculate the
expected return of different forks in the view of a given petty-compliant mining
pool p, we use random walking on a (x, y)-grid. The two-dimensional (x, y)-
grid represents the fork race between the fork of mining pool p and the fork of
remaining mining pools, referred to as the public fork. Each fork race scenario
can be represented by a path on this grid, which is referred to as the mining path.
Whenever the petty-compliant mining pool p mines a new block, the mining path
moves one step to the right, and whenever a block is added on top of the public
fork, the mining path moves one step up.

Lemma 3. Consider the (x, y)-grid representation of the fork race between the
petty-compliant mining pool p with mining share α and the remaining mining
5 This action simplifies the relative revenue calculation and is not the optimal action

that the adversarial mining pool can take in state (lA, lR) = (2, 0). In an optimal
strategy, the adversarial mining pool may hide all three blocks to orphan a longer
non-adversarial fork.
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pools. Let Pr for r ≥ 1 denote the probability of the event that the mining path
starting at (0, 0) never reaches the line y = x− r. We have Pr = 1−

(
α

1−α

)r

.

Proof. The proof of Lemma 3 is presented in App. D.2 of [40]. Here, we briefly
review the idea behind the proof.

Let Pr denote the probability of the event that the mining path starting at
(0, 0) reaches the line y = x−r at least once. Starting at point (0, 0), the mining
path moves to point (1, 0) with probability α and moves to point (0, 1) with
probability 1− α. The probability of the event that the mining path starting at
(1, 0) reaches the line y = x − r is equal to Pr−1. And, the probability of the
event that the mining path starting at (0, 1) reaches the line y = x− r is equal
to Pr+1. Therefore, we have: Pr = αPr−1+(1−α)Pr+1. This recursive equation
can be evaluated for different values of r ≥ 1 by having P1 and P2.

We first find the probability of P1, i.e., the probability of reaching the line
y = x − 1 starting at point (0, 0). Suppose the mining path reaches the line
y = x− 1 at the point (s+ 1, s) for the first time. For this to occur, the mining
path must reach the point (s, s) without crossing below the line y = x, and then
take a step to the right. The number of valid paths from (0, 0) to (s, s), while not
passing below the line y = x, corresponds to the s-th Catalan number, which we
refer to as cs. Therefore, the probability that the mining path reaches the line
y = x − 1 for the first time at (s + 1, s) is given by csα

s+1(1 − α)s. Hence, the
overall probability of reaching the line y = x− 1 can be expressed as:

P1 = α

∞∑
s=0

csα
s(1− α)s =

α

1− α
. (7)

The method for solving this series is provided in [12]. We next find the prob-
ability of P2, i.e., the probability of reaching the line y = x − 1 starting at
point (0, 0). Suppose the mining path first reaches the line y = x − 2 at the
point (s + 2, s). For this to happen, the mining path must first reach the point
(s+1, s) without falling below the line y = x− 1, and then take one step to the
right. The number of valid paths from (0, 0) to (s+ 1, s), without falling below
the line y = x − 1, corresponds to the (s + 1)-th Catalan number, cs+1. Thus,
the probability of reaching the line y = x − 2 for the first time at the point
(s+2, s) is given by cs+1α

s+2(1−α)s. Therefore, the probability of reaching the
line y = x− 2 is:

P2 = α2
∞∑
s=0

cs+1α
s(1− α)s =

α

1− α

∞∑
s=1

csα
s(1− α)s =

(
α

1− α

)2

. (8)

Knowing P1 = α
1−α , P2 =

(
α

1−α

)2, and the recursive equation Pr = αPr−1 +

(1 − α)Pr+1, the probability Pr for r ≥ 1 can be obtained as Pr =
(

α
1−α

)r.
Therefore, the probability of the event that the mining path starting at (0, 0)

never reaches the line y = x− r can be obtained as Pr = 1−
(

α
1−α

)r

.
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□

Lemma 4. Let Gd
s for d ≥ 1 denote the number of paths in a (x, y)-grid from

start point (0, 0) to the point (s, s+ d) without reaching the lines y = x− 2 and
y = x+ d in advance. We have:

∞∑
s=0

Gd
s

(
α(1− α)

)s
=

1− 2α

(1− α)d+2 − αd+2
,

∞∑
s=0

sGd
s

(
α(1− α)

)s
=

(d+ 2)α(1− α)
(
(1− α)d+1 + αd+1

)(
(1− α)d+2 − αd+2

)2
− 2α(1− α)

(1− 2α)
(
(1− α)d+2 − αd+2

) .

(9)

Proof. The proof follows the same logic as the proof of Lemma 4 presented in
App. D.2 of [40]. Assume Event1(s) is defined as follows: (i) the block path
starting at (0, 0) reaches the point (s, s + d − 1), and (ii) before reaching the
point (s, s+ d− 1), the block path never passes the line y = x+ d− 1 and never
reaches the line y = x− 2. According to the definition of Gd

s , the probability of
Event1(s) is equal to Gd

sα
s(1−α)s+d−1. Assume Event2(s) is defined as follows:

(i) the block path starting at (0, 0) passes the line y = x+d−1 for the first time at
point (s, s+d−1), and (ii) before reaching the point (s, s+d−1), the block path
never reaches the line y = x − 2. Event2(s) happens if, after the occurrence of
Event1(s) and reaching the point (s, s+d−1), the block path immediately moves
one step up to pass the line y = x+d−1 and reach the point (s, s+d). Therefore,
the probability of Event2(s) is equal to Gd

sα
s(1 − α)s+d. Assume Event3(s) is

defined as follows: (i) the block path starting at (0, 0) reaches the line y = x+ d
for the first time at point (s, s + d), and (ii) the block path never reaches the
line y = x − 2 both before and after reaching the point (s, s + d). Event3(s)
happens if, after the occurrence of Event2(s) and reaching the point (s, s + d),
the block path never reaches the line y = x − r. The event that the block path
starting at (s, s+ d) never reaches the line y = x− 2 is equivalent to the event
that the block path starting at (0, 0) never reaches the line y = x− (d+ 2), the
probability of which is equal to 1− ( α

1−α )
d+2 according to Lemma 3. Therefore,

the probability of Event3(s) is equal to Gd
sα

s(1 − α)s+d
(
1 − ( α

1−α )
d+2

)
. Note

that since 1 − α > α, a mining path will eventually pass the line y = x + d.
Therefore, the sum of Event3(s) probabilities over all values of s is equal to the
probability that the block path never reaches the line y = x− 2, the probability
of which is equal to 1− ( α

1−α )
2 according to Lemma 3. As a result,

∞∑
s=0

Gd
sα

s(1− α)s+d
(
1− (

α

1− α
)d+2

)
= 1− (

α

1− α
)2

⇒
∞∑
s=0

Gd
s

(
α(1− α)

)s
=

1− 2α

(1− α)d+2 − αd+2
.

(10)
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To prove the second equality, we use the variable substitution α(1 − α) = x in
the equality above. By taking the derivative from both sides, then multiplying
both sides to x, and finally substituting x = α(1 − α), the second equality can
be obtained. □

Lemma 5. Let F d
s for d ≥ 1 denote the number of paths in a (x, y)-grid from

start point (0, 0) to the point (s+ 2, s) without reaching the lines y = x− 2 and
y = x+ d in advance. We have:

∞∑
s=0

F d
s

(
α(1− α)

)s
=

1

α2

(
1− 1− 2α

(1− α)2
(
1− ( α

1−α )
d+2

)) . (11)

Proof. According to the proof of Lemma 4, the probability of the event that the
mining path starting at point (0, 0) reaches the line y = x + d before reaching
the line y = x − 2 is equal to 1−2α

(1−α)2
(
1−( α

1−α )d+2
) . Therefore, the probability of

the event that the mining path starting at point (0, 0) reaches the line y = x− 2
before reaching the line y = x+ d is equal to 1− 1−2α

(1−α)2
(
1−( α

1−α )d+2
) . According

o the definition of F d
s , the latter probability is equal to F d

s α
2
(
α(1 − α)

)s. This
completes our proof. □

Proof (Proof of Lemma 2). We need to compare the expected return of mining
on top of 2 forks f1 and f2 to find out which one is more profitable. We assume:

– If fork f1 lags behind fork f2 by d blocks, where d ≥ 2, the mining pool pi
switches to mine on top of f2. This is because mining pool pi is assumed to
be a D = 1-petty-compliant mining pool.

– If fork f1 becomes even one block longer than fork f2, all the remaining
mining pools switch to mine on top of f1. This assumption is in favor of the
mining pool pi.

We calculate the expected return using the (x, y)-grid. l1 = 1 and l2 = 2 implies
that the mining path is at point (1, 2). If the mining path reaches the line y =
x− 1 before reaching the line y = x+ d, the mining pool pi wins the fork race.
If the mining path reaches the line y = x+ d before reaching the line y = x− 1,
the mining pool pi loses the fork race. Assume the mining path starting at point
(1, 2) reaches the line y = x− 1 for the first time at point (s+ 3, s+ 2) without
reaching the line y = x + d in advance. The probability of this event is equal
to F d−1

s α2
i (αi(1− αi))

s. The mining pool pi receives s+ 3 block rewards under
this event. Therefore, the expected return of mining on top of fork f1 for mining
pool pi up to the point that the fork race is resolved can be obtained as follows:

r1 =

∞∑
s=0

(s+ 3)F d−1
s α2

i (αi(1− αi))
s . (12)

The fork race ends once the mining path reaches either y = x− 1 or y = x+ d.
To obtain the expected return of switching the fork, we calculate the reward



Mining Power Destruction Attacks 27

that the mining pool pi could have received if it was mining on top of the fork
f2. Assume the mining path starting at point (1, 2) reaches the line y = x + d
for the first time at point (s+1, s+d+1) without reaching the line y = x−1 in
advance. The probability of this event is equal to Gd−1

s (1−αi)
d−1(αi(1−αi))

s.
The mining pool pi receives s block rewards under this event. Now, assume the
mining path starting at point (1, 2) reaches the line y = x−1 for the first time at
point (s+3, s+2) without reaching the line y = x+d in advance. The probability
of this event is equal to F d−1

s α2
i (αi(1− αi))

s. The mining pool pi receives s+ 2
block rewards under this event. Therefore, the expected return of mining on top
of fork f2 for mining pool pi up to the point that the mining path reaches either
y = x− 1 or y = x+ d can be obtained as follows:

r2 =

∞∑
s=0

(s+ 2)F d−1
s α2

i (αi(1− αi))
s + sGd−1

s (1− αi)
d−1(αi(1− αi))

s . (13)

Using Lemmas 5 and 4, r1 and r2 can be calculated. The petty-compliant mining
pool pi is incentivized to leave its fork at state l1 = 1 and l2 = 2 if r1 − r2 < 0.
For αi ∈ (0, 0.5), the function r1 − r2 is decreasing on d. By assigning d = 2, the
inequality r1 − r2 < 0 holds if αi < 0.4302. □

C.5 Proof of Thm. 1

Proof (Proof of Thm. 1). Let PrlA,lR denote the probability of being in state
(lA, lR). We can obtain the following equations:

Pr0,0 =
1− αA

1 + (1− αA)2αA
,

Pr1,0 = αAPr0,0 ,

Pr2,0 =
αA

1− αA
Pr1,0 ,

Pr1,1 = (1− αA)Pr1,0 .

(14)

To find the adversarial average revenue, we should consider the average number
of adversarial blocks that get added to the canonical chain at each state. The
average revenue that the adversarial mining pool receives can be obtained as
follows:

Rev =
(
αAPr2,0+2(1−αA)Pr2,0+2αAPr1,1+(1−αA−βA)Pr1,1

)
λ′R , (15)

where λ′ is the block mining rate under the selfish mining attack.
To find the adversary’s cost, we ignore the mining cost6 and only consider

the cost incurred by the adversarial mining pool due to paying bribes. Note that
the normalized bribe br = ϵ is payable if, under a fork race, the adversarial
6 The mining cost during both honest mining and selfish mining is the same, and thus

does not affect the profit comparison between these two strategies.
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fork is extended by a non-adversarial block. In this case, the non-adversarial
mining pool that extends the adversarial block is eligible to collect the bribe.
The average cost of the adversarial mining pool can be obtained as follows:

Cost =
∑

pi∈PA

ϵ(1− αA − αi)αiPr1,0λ′R = ϵ(1− αA − βA)Pr1,1λ′R , (16)

where PA is the set of non-adversarial mining pools.
The mining rate under the selfish mining attack can be obtained as λ′ = λ

Diff ,
where Diff is the normalized number of blocks added to the canonical chain and
can be obtained as follows:

Diff = (1− αA)Pr0,0 + αAPr2,0 + 2(1− αA)Pr2,0 + 2Pr1,1 . (17)

Therefore, after mining difficulty adjustment, the time-averaged profit can be
calculated as below:

Profit
(
πselfish) = 2α4

A − 5α3
A + 4α2

A + αA(1− αA)(1− αA − βA)(1− ϵ)

α3
A − α2

A + 1
λR .

(18)
The selfish mining strategy πselfish strongly dominates honest mining if we have:

Profit
(
πselfish) > αAλR ⇐⇒ βA <

αA − ϵ(1− αA)
2

(1− αA)(1− ϵ)
. (19)

□

C.6 Proof of Cor. 1

Proof. According to Thm. 1, selfish mining dominates honest mining for P1 if
the inequality β1 < α1−ϵ(1−α1)

2

(1−α1)(1−ϵ) holds. The maximum value that P1’s residual
centralization factor β1 can take is equal to the mining share of the largest mining
pool excluding P1, which in our case is α2. This maximum value occurs when all
mining pools, excluding P1, have the same mining share αi. Therefore, to satisfy
the inequality β1 < α1−ϵ(1−α1)

2

(1−α1)(1−ϵ) , one must ensure that α2 < α1−ϵ(1−α1)
2

(1−α1)(1−ϵ) holds.
The latter inequality holds if α1

1−α1
> α2 + ϵ(1−α1 −α2) holds. This proves the

first statement of the corollary.
In the case of ϵ = 0, selfish mining is the dominant strategy for P1 if α1

1−α1
>

α2 holds, which is always the case as α1 ≥ α2. □

C.7 Mining pools

The distribution of mining power share for the first 8 months of 2024 is presented
in Table 1 [3]. We consider all the unknown miners as a single mining pool.
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Table 1: Mining Power Distribution of Bitcoin Mining Pools
Foundry USA AntPool ViaBTC F2Pool Unknown Mara Pool

29.03% 24.85% 12.86% 11.53% 7.90% 3.44%
Binance Pool SBI Crypto Braiins Pool BTC.com BTC M4 Poolin

3.00% 2.10% 1.78% 1.42% 0.83% 0.80%
Ultimus 1THash Solo CKPool KanoPool

0.35% 0.00054% 0.034% 0.011%

C.8 MDP-Based Analysis

In this section, we present an MDP-based implementation to analyze selfish min-
ing in the presence of petty-compliant mining pools. The implementation is avail-
able at [2]. Our MDP implementation considers the following two assumptions:
1) The environment is an (ϵ,D = 0)-semi-rational environment, where D = 0
implies that petty-compliant mining pools always select the longest chain. How-
ever, in the case of a fork with chains of the same height, they opt for the chain
with the highest return. 2) The bribe placed on the adversarial chain is valid
until the next non-adversarial block is mined. The next non-adversarial block
either collects the bribe or leaves it unspent, allowing the adversary to collect it
back. This assumption can be implemented using a smart contract, as described
in App. C.9. Our selfish mining analysis differs from the implementation in [9],
which assumes volatile block rewards. Our approach assumes uniform block re-
wards, while allowing the adversary to place bribes on top of the adversarial
fork.

MDP can be used to obtain the optimal strategy in settings where the num-
ber of states is limited to less than 107 [47]. Due to the limitation of the state
space, our MDP implementation only accounts for sufficiently large mining pools,
while treating the remaining mining power as a single, aggregated mining pool.
Let N denote the total number of mining pools available in the network. Our
implementation can consider up to almost N = 10 mining pools. Assume that
mining pool p1 is the single honest mining pool.7 Assume further that the set
{p2, p3, . . . , pN−1} denotes the N − 2 petty-compliant mining pools, and pA de-
notes the adversarial mining pool. Each state in our implementation represents
a fork race between the adversarial fork of length lA and the non-adversarial
fork of length lA. We first discuss the set of possible actions. The adversarial
mining pool can choose from four major actions: Override, Wait, Adopt, and
Match, where the action Match consists of multiple subactions.
Override: This action represents the adversarial mining pool publishing a sub-
fork of its secret fork that is one block longer than the honest fork. As a result
of the Override action, non-adversarial mining pools abandon their current
fork and start mining on top of the longer adversarial fork. This is because,
according to our assumption, the petty-compliant pools are (ϵ,D = 0)-semi-

7 All honest mining power is unified into a single honest mining pool.
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rational, meaning that they always mine on top of the longest chain. This action
is feasible if lA > lA.
Wait: This action represents the adversarial mining pool continuing to mine new
blocks on top of its secret fork. This action is always feasible.
Adopt: The Adopt action represents the adversarial mining pool abandoning its
adversarial fork and accepting the non-adversarial fork. This action is always
feasible.
Matchi: The action Matchi for i ∈ {0, 1, · · · , max_bribe} represents the adver-
sarial mining pool publishing a sub-fork of its secret fork that is equal in length
to the non-adversarial fork and placing a normalized bribe of value i+ϵ on top of
the adversarial fork. max_bribe is a parameter denoting the maximum bribe the
adversary can pay. Action Matchi results in a race between two forks of the same
height. Petty-compliant pools, whose number of blocks on the non-adversarial
fork is less than or equal to i, are incentivized to mine on the adversarial fork.
This action is feasible if lA ≥ lA.

The most important difference between the set of possible actions in the
setting of petty-compliant mining pools and the altruistic setting is the action
Matchi for i ∈ [max_bribe]. Note that the undercutting attack is a subset of
the stated possible actions. The undercutting attack can be described as follows:
starting in state (lA = 0, lA = 1), the adversarial mining pool first takes the
Wait action, attempts to mine a block to transition to state (lA = 1, lA = 1),
and then proceeds with the Match0 action.

Each state in our implementation has the following form:(
l1, l2, . . . , lN−1, lA, latest, match, bribe

)
.

Here, li for i ∈ [N−1] denotes the number of blocks mined by pool pi in the non-
adversarial fork, where we have lA =

∑N−1
i=1 li. The variable latest represents

information on the latest block mined in the system, match is a boolean element
indicating whether the action Match is active, and bribe denotes the amount of
bribe placed on top of the adversarial fork. Table 2 presents the reward shares
that an adversarial mining pool with a mining share of 0.4 can achieve under
different distributions of mining power among petty-compliant mining pools.
Table 3 presents the selfish mining reward shares of an adversarial mining pool
with a mining share of 0.3. Table 4 presents the selfish mining reward shares
achieved by mining pools, with mining shares assigned according to the real-
world distribution shown in Table 1. As can be observed, in scenarios where the
residual centralization factor with respect to the adversary is lower, the reward
share the adversary can achieve is higher.

C.9 Smart Contract-Based Selfish Mining

The goal of the adversarial mining pool is to design a bribing smart contract
such that the bribe placed on the adversarial fork remains valid until the next
non-adversarial block is mined. If a non-adversarial block is mined on top of the
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Table 2: Selfish mining in the presence of petty-compliant pools (αA = 0.4, ϵ =
0.1).

Adversarial Share Petty-Compliant Mining Pool Shares
0.40 [0.3, 0.3]

Residual Centralization Factor: 0.3 Reward Share: 0.5448
Adversarial Share Petty-Compliant Mining Pool Shares

0.40 [0.2, 0.2, 0.2]
Residual Centralization Factor: 0.2 Reward Share: 0.5714

Adversarial Share Petty-Compliant Mining Pool Shares
0.40 [0.1, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.05]

Residual Centralization Factor: 0.0766 Reward Share: 0.5955
Adversarial Share Petty-Compliant Mining Pool Shares

0.40 [0.075, 0.075, 0.075, 0.075, 0.075, 0.075, 0.075, 0.075]
Residual Centralization Factor: 0.075 Reward Share: 0.5967

adversarial fork, the miner of the non-adversarial block should be able to receive
the bribe; otherwise, the adversary should be able to recollect it.

Let BA denote the tip of the adversarial fork and BA denote the tip of the
non-adversarial fork. The adversarial mining pool deploys a smart contract and
publishes it for all mining pools. The smart contract stores four parameters:
the hash of block BA, denoted by Hash(BA); the hash of block BA, denoted by
Hash(BA); a difficulty target denoted by Target, which is equal to the difficulty
target of the epoch to which blocks BA and BA belong; and a payout address
addA for the adversarial mining pool. The adversarial mining pool deposits a
normalized bribe br into the smart contract. Anyone who submits a witness
proving the mining of a block on top of the adversarial block BA can withdraw
br. A valid witness includes a Bitcoin nonce, a Merkle root MR, a Bitcoin coinbase
transaction tx, a Merkle inclusion proof, and a payout address add in the host
blockchain, satisfying the following conditions:

Table 3: Selfish mining in the presence of petty-compliant pools (αA = 0.3, ϵ =
0).

Adversarial Share Petty-Compliant Mining Pool Shares
0.30 [0.4, 0.2, 0.1]

Residual Centralization Factor: 0.3 Reward Share: 0.3534
Adversarial Share Petty-Compliant Mining Pool Shares

0.30 [0.2, 0.2, 0.2, 0.1]
Residual Centralization Factor: 0.1857 Reward Share: 0.3877

Adversarial Share Petty-Compliant Mining Pool Shares
0.30 [0.2, 0.2, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05]

Residual Centralization Factor: 0.1357 Reward Share: 0.4006
Adversarial Share Petty-Compliant Mining Pool Shares

0.30 [0.0875, 0.0875, 0.0875, 0.0875, 0.0875, 0.0875, 0.0875, 0.0875]
Residual Centralization Factor: 0.0875 Reward Share: 0.4112
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Table 4: Selfish mining results under real-world mining power distribution (ϵ =
0).

Adversarial Share Petty-Compliant Mining Pool Shares
0.07902 [0.29033, 0.24852, 0.12858, 0.11527, 0.03438, 0.03000, 0.02101, 0.05289]

Residual Centralization Factor: 0.1967 Reward Share: 0.0794
Adversarial Share Petty-Compliant Mining Pool Shares

0.11527 [0.29033, 0.24852, 0.12858, 0.07902, 0.03438, 0.03000, 0.02101, 0.05289]
Residual Centralization Factor: 0.1968 Reward Share: 0.1166

Adversarial Share Petty-Compliant Mining Pool Shares
0.12858 [0.29033, 0.24852, 0.11527, 0.07902, 0.03438, 0.03000, 0.02101, 0.05289]

Residual Centralization Factor: 0.1961 Reward Share: 0.1306
Adversarial Share Petty-Compliant Mining Pool Shares

0.24852 [0.29033, 0.12858, 0.11527, 0.07902, 0.03438, 0.03000, 0.02101, 0.05289]
Residual Centralization Factor: 0.1672 Reward Share: 0.2980

Adversarial Share Petty-Compliant Mining Pool Shares
0.29033 [0.24852, 0.12858, 0.11527, 0.07902, 0.03438, 0.03000, 0.02101, 0.05289]

Residual Centralization Factor: 0.1453 Reward Share: 0.3785

– A valid block is mined on top of adversarial block BA:

Hash
(
Hash(BA), MR, nonce

)
≤ Target . (20)

– The coinbase transaction is included in the list of block transactions, meaning
a valid Merkle inclusion proof is available to demonstrate that the coinbase
transaction tx is a leaf of a Merkle tree with Merkle root MR.

– The payout address add is included in the coinbase transaction.

If the witness transaction satisfies the conditions above, the bribe br will be
transferred from the smart contract deposit to the payout address add. However,
if the adversary submits a witness proving the mining of a block on top of the
non-adversarial block BA, it can recollect br. Upon submission of a valid witness
of mining on top of the non-adversarial block BA, the bribe will be transferred
to the adversarial payout address addA stored in the contract.

C.10 Duration and Cost of the Initial Loss Period in Selfish Mining

As discussed in the literature [19,20,41], all mining destruction attacks, including
selfish mining, face an initial period of financial loss before the mining difficulty
adjusts. During the first epoch of selfish mining, some adversarial blocks may be-
come orphaned, while the adversarial block generation rate remains unchanged.
Therefore, due to the loss of some adversarial blocks, the adversarial mining pool
incurs a profit loss before the difficulty adjustment. However, after the difficulty
adjustment at the end of the attack’s first epoch, the mining difficulty reduces,
leading to an increase in the adversarial block generation rate. If this increase
in the block generation rate can compensate for the loss of orphaned adversarial
blocks, the selfish mining attack can become profitable.

In Fig. 5, we depict the normalized revenue advantage of the selfish mining
attack for a real-world mining pool with mining share 0.29033 as a function
of time for different values of incentivizing factor ϵ. The revenue advantage is
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Fig. 5: The normalized revenue advantage of selfish mining over time (adversarial
mining power share: 0.29033).

defined as the difference between the attack revenue and honest mining revenue
since the launch of the attack [20]. As shown in Fig. 5, during the first epoch
of the attack, which lasts longer than the standard 2-week epoch duration, the
revenue advantage decreases, indicating a financial loss for the adversarial mining
pool. However, after the difficulty adjustment at the end of the first epoch,
the revenue advantage of the selfish mining attack begins to increase. A couple
of weeks after the attack begins, the revenue advantage finally turns positive,
meaning that selfish mining can be considered profitable from that point onward.
The initial duration in which the revenue advantage is negative, referred to as
the profit lag in [20], can be considered the initial loss duration of a selfish
mining attack. As can be seen in Fig. 5, the initial cost of the attack increases
with a higher incentivizing factor. This is because, in an environment with a
higher incentivizing factor, the petty-compliant pools are more likely to behave
honestly, and consequently, the adversary must pay a higher bribe to incentivize
them.

D Bribery Attack: Supplementary

D.1 Proof of Thm. 2

Proof. Assume L = 2016 denotes the epoch length, R denotes the block reward,
and λ denotes the block mining rate (the number of blocks mined per unit of
time) when all the mining pools follow the honest strategy. We first calculate
the time-averaged profit of the adversarial pool under the bribery attack. Since
the average number of target blocks per epoch for which a rival block is mined is
equal to k, we can conclude that the average number of non-adversarial blocks



34 Roozbeh Sarenche, Svetla Nikova, and Bart Preneel

that get orphaned per epoch is also k. Given that, on average, the same number
of non-adversarial blocks are orphaned in each epoch, the mining difficulty is
well-adjusted, indicating that the mining rate in all epochs is the same as λ.
Therefore, the duration of each epoch is equal to L/λ. In the absence of an
attack, out of L canonical blocks per epoch, αL blocks are adversarial. Under
the bribery attack, however, k blocks are orphaned, where all of them are non-
adversarial. The k non-adversarial orphaned blocks need to be replaced with
k new blocks, of which αk blocks are adversarial. This implies that under the
bribery attack, the number of adversarial blocks per epoch increases to α(L+k)
blocks. Therefore, the adversarial mining pool receives a total Rev of αA(L+k)R
per epoch. The cost that the adversary incurs in each epoch includes the mining
cost and the bribery cost. Here, we ignore the mining cost in our calculation as
it is the same as when mining honestly. The total bribery Cost in each epoch is
kbrR since the adversary needs to pay a normalized bribe of br for each of the
k successful attempts of the bribery attack. Therefore, the time-averaged profit
of the bribery attack can be obtained as follows:

Profitbr =
Rev − Cost
duration

=
λ
(
αA(L+ k)R− kbrR

)
L

= λαAR+
λkR

L
(αA−br) .

(21)
The time-averaged profit of honest mining is equal to ProfitH = λαAR. The
bribery attack can strongly dominate the honest strategy if the following in-
equalities hold:

Profitbr > ProfitH ⇐⇒ λαAR+
λkR

L
(αA − br) > λαAR ⇐⇒ αA > br .

(22)
□

D.2 Bribery Attack Under the Assumption of Unknown Miners

In Sect. 4.1, we analyzed the bribery attack under the assumption that the miner
of a target block is known. However, a mining pool may choose not to reveal its
identity in the coinbase transaction. This makes it difficult for the adversarial
and remaining petty-compliant mining pools to detect the miner of the target
block. In this section, we analyze the bribery attack in the setting where the
miner of the target block is unknown. In the following, we only discuss the
smart contract-based attack.

Bribery Attack Using Smart Contracts. An adversarial mining pool with
mining share αA can conduct the smart contract-based bribery attack if there
is at least one petty-compliant mining pool pj ∈ P whose residual centralization
factor is less than the mining share of the adversarial mining pool. Otherwise,
the attack is not feasible.

Assume that block B1 represents the head of the canonical chain, and its
corresponding miner is not known to the adversarial and petty-compliant mining
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pools. Block B1 is considered a target block of the bribery attack if it is a non-
adversarial block. Let βj denote the residual centralization factor with respect
to the mining pool pj , and min(βj) denote the minimum residual centralization
factor among all the mining pools. The adversarial mining pool deposits two
normalized bribes, br1 and br2 = ϵ, in the smart contract, where br1 can take
any value in the range [min(βj) + ϵ, αA − 2ϵ). The other details are similar to
the smart contract-based attack in the known miner setting.

Lemma 6. Assume block B1 which denotes the head of the canonical chain is
mined by an unknown mining pool. Assume further that block B1 is a target of
the smart contract-based bribery attack that offers two normalized bribes br1 and
br2 = ϵ. In an environment with the incentivizing factor ϵ, a petty-compliant
mining pool pj which is not the miner of block B1 is incentivized to follow the
bribery attack strategy if br1 ≥ βj+ϵ, where βj denotes the residual centralization
factor w.r.t. the mining pool pj.

Proof. Let P denote the set of all mining pools (both semi-rational and adver-
sarial). If a petty-compliant mining pool pj ∈ P mines on top of the target block,
its expected return for the next block is equal to r1 = αjR. If it tries to mine a
rival block, its expected return is equal to r2 = αjpsuccess(1 + br1)R + αj(1 −
psuccess)br1R, where psuccess represents the probability that the mining pool pj
wins the fork race. Let Pj denote the set of all the mining pools excluding pj .
The target block Bi can be mined by any of the mining pools in Pj . If block B1

is mined by mining pool pi, pj will win the fork race with probability 1− αi as
all the remaining mining pools are incentivized to mine on top of the rival block.
Therefore, the total probability that the mining pool pj wins the fork race can
be obtained as follows:

psuccess =

∑
Pj

αi(1− αi)

1− αj
= 1− βj , (23)

where βj is the residual centralization factor w.r.t. the mining pool pj . The
mining pool pj is incentivized to follow the adversarial bribing strategy if r2 ≥
r1 + ϵαjR. We have:

r2 ≥ r1 + ϵαjR ⇐⇒ αj(1− βj)(1 + br1)R+ αjβjbr1R ≥ αjR+ ϵαjR

⇐⇒ br1 ≥ βj + ϵ .
(24)

□

Lemma 7. In an environment with an unknown miner setting and an incen-
tivizing factor ϵ, an adversarial mining pool with mining share αA is incentivized
to conduct a smart contract-based bribery attack if there exists at least one petty-
compliant mining pool such as pj with residual centralization factor βj for which
the following inequality holds:

αA > βj + 2ϵ . (25)
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Proof. According to Thm. 2, the bribery attack can be profitable as long as the
bribe that the adversarial mining pool pays out for orphaning a non-adversarial
block is less than its mining share. Therefore, since αA > βj+2ϵ, the adversarial
mining pool can set the total bribe for orphaning a single non-adversarial block to
br = βj+2ϵ and still profits from the bribery attack. According to Lemma 6, with
a bribe of value br, the petty-compliant mining pool pj is incentivized to follow
the adversarial bribing strategy. Since there exists at least one petty-compliant
mining pool that follows the adversarial strategy, the attack is profitable. □

D.3 Bribery Attack Using Whale Transactions

In the bribery attack using whale transactions, the adversarial mining pool sets
its bribe as the transaction fee of a transaction that is only valid if included
in the chain mined on top of the rival block. This transaction becomes invalid
if included in the chain mined on top of the target block. We first explain the
attack.

Attack Description. Let αA represent the mining share of the adversarial
mining pool pA. Assume block B1 denotes the head of the canonical chain and
is mined by mining pool pi with mining share αi. From the perspective of the
adversarial mining pool, block B1 can be considered a valid target block for the
bribery attack if the following condition holds:

– B1 is a non-adversarial block.
– αA > αi

1−αi
+ ϵ( 1

1−αi
+ 1).

If the conditions above are not satisfied, the attack is not applicable, and the
adversarial mining pool waits for the next block. If block B1 is a valid target
block, the adversarial mining pool proceeds with the bribery attack.

We assume an adversarial transaction txA is already included in block B1.
The adversarial mining pool then creates two bribes, br1 and br2, and sets
them as the transaction fees for transactions tx1 and tx2, respectively. These
transactions are only valid if txA is not included beforehand in the canonical
chain. The adversarial mining pool publishes transactions tx1 and tx2 once block
B1 is published. br1 serves as a bribe for the miner of the rival block. br2 serves
as a bribe for the miner of the supporting block, the block that is mined on
top of the rival block in the case of a fork race between the rival and target
blocks. Once transactions tx1 and tx2 are published in the network, a petty-
compliant mining pool should choose one of the following two strategies: it can
either continue mining on top of block B1 without including transaction tx1, or
it can try to mine a rival block that includes transaction tx1

8. If the next block
B2 is mined on top of block B1, the bribery attack targeting B1 fails, and the
adversarial mining pool repeats the same attack on block B2. If the next block
B2 is a rival block for B1, the attack is successful.
8 The miner of the rival block can include both transactions tx1 and tx2 in its block.

However, it would be a wise decision to leave tx2 as a bribe for the supporting block.
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During this attack, the adversarial mining pool commits to the following
strategy: if no rival block is published, it mines on top of the target block (the
head of the canonical chain). Once a rival block is published, it switches to
mining on top of the rival block.

Lemma 8. Assume block B1 is mined by mining pool pi with mining share αi.
Assume further that block B1 is a target of the whale transaction-based bribery
attack that offers two normalized bribes br1 = αi+ϵ

1−αi
and br2 = ϵ. In an environ-

ment with the incentivizing factor ϵ, all the petty-compliant mining pools except
pi are incentivized to mine a rival block for B1.

Proof. Let Pi denote the set of all mining pools excluding pi. Under the bribery
attack, the petty-compliant mining pools need to choose between mining on top
of block B1 or mining on top of its parent block to mine a rival block.

Let Bnext denote the next block that is mined during the attack. We first
determine the best strategy that a non-adversarial mining pool pj ∈ Pi should
take once block Bnext is published. If block Bnext is mined on top of B1, the
attack fails and all mining pools, including pj , will continue mining on top of
B1. However, if Bnext is mined on top of B0, a fork race will occur between B1

and Bnext. During this fork race, since there is a bribe of br2 = ϵ on top of block
Bnext, all the mining pools in Pi, including pj , will mine on top of block B1, and
only pi will mine on top of block B1.

Knowing the best strategy for pool pj after the publishing of block Bnext, we
can obtain the optimal strategy for pj to follow before Bnext is published. To this
end, we compare the average expected return under the following two strategies
for the next block:

– Strategy π1: pj mines on top of block B1 and does not include any of the
transactions tx1 or tx2 in the block, as these transactions are not valid in a
chain mined on top of block B1.

– Strategy π2: pj mines on top of block B0 and includes only tx1 with a
transaction fee of br1R in the block. In this strategy, the mining pool pj
refrains from including tx2 in its block, leaving it as a bribe on top of its
potential block in the upcoming fork race.

Under strategy π1, the expected return of mining pool pj for the next block
is equal to r1 = αjR. Under strategy π2, the expected return of mining pool pj
for the next block can be obtained as follows:

r2 = αj ·Rrival · psuccess , (26)

where Rrival is the total block reward of the rival block, and psuccess is the prob-
ability that the rival block wins the fork race against the target block B1. The
total block reward Rrival consists of both the block reward and the transaction
fee of tx1, implying that Rrival = (1 + br1)R. The probability that the rival
block wins the fork race is 1 − αi, as the only mining pool mining on top of
the target block is pi. All the remaining petty-compliant mining pools choose to
mine on top of the rival block due to the bribe br2 = ϵ available on top of it.
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Additionally, the adversarial mining pool mines on top of the rival block since it
has already committed to it. Therefore, we obtain r2 = αj(1−αi)(1+br1)R . In
an environment with incentivizing factor ϵ, mining pool pj chooses the strategy
π2 over strategy π1 if r2 ≥ r1 + ϵαjR. We have:

r2 ≥ r1 + ϵαjR ⇐⇒ αj(1− αi)R(1 + br1) ≥ αjR+ ϵαjR ⇐⇒ br1 ≥ αi + ϵ

1− αi
.

(27)
□

Theorem 4. In an environment with an incentivizing factor ϵ, an adversarial
mining pool with mining share αA is incentivized to conduct a whale transaction-
based bribery attack on any target block B if block B is mined by a mining pool
with mining share αi, where αA > αi

1−αi
+ ϵ

(
1

1−αi
+ 1

)
.

Proof. According to Lemma 8, in an environment with an incentivizing factor
ϵ, any block B mined by a mining pool with mining share αi is susceptible to
a whale transaction-based bribery attack if normalized bribes are set as br1 =
αi+ϵ
1−αi

and br2 = ϵ. Therefore, to conduct a bribery attack on block B, the
adversarial mining pool should pay the normalized bribe of br = br1 + br2 =
αi

1−αi
+ ϵ

(
1

1−αi
+ 1

)
. According to Thm. 2, the bribery attack is profitable for

the adversarial mining pool if αA > br. This completes the proof. □

According to Thm. 4, assuming ϵ = 0, an adversarial mining pool with a mining
share αA can perform a bribery attack on blocks mined by pools whose mining
power is less than αA

1+αA
. This implies that even mining pools with mediocre

or low amounts of mining power can exploit weaker mining pools through the
bribery attack.

D.4 Proof of Thm. 3

To prove Thm. 3, we first present the following lemma.

Lemma 9. Assume block B1 is mined by mining pool pi with mining share αi.
Assume further that block B1 is a target of the smart contract-based bribery attack
that offers two normalized bribes br1 = αi + ϵ and br2 = ϵ. In an environment
with the incentivizing factor ϵ, all the petty-compliant mining pools except pi are
incentivized to follow the bribery attack strategy.

Proof. Let Pi denote the set of all mining pools excluding pi. Under the bribery
attack, the petty-compliant mining pools need to choose between mining on top
of block B1 or mining on top of its parent block to mine a rival block.

Let Bnext denote the next block that is mined during the attack. We first
determine the best strategy that a non-adversarial mining pool pj ∈ Pi should
take once block Bnext is published. If block Bnext is mined on top of B1, the
attack fails and all mining pools, including pj , will continue mining on top of
Bnext. However, if Bnext is mined on top of B0, a fork race will occur between B1



Mining Power Destruction Attacks 39

and Bnext. During this fork race, since there is a bribe of br2 = ϵ on top of block
Bnext, all the mining pools in Pi, including pj , will mine on top of block B1, and
only pi will mine on top of block B1. Note that even for the adversarial pool,
mining on top of Bnext weakly dominates mining on top of B1. If the adversarial
mining pool manages to mine the next block on top of Bnext, the bribe br2 = ϵ
will be cleared by the adversary, and there is no need to pay that.

Knowing the best strategy for mining pool pj ∈ Pi after the publishing of
block Bnext is to mine on top of that, we can obtain the optimal strategy for pj
to follow before Bnext is mined. To this end, we compare the average expected
return under the following two strategies for the next block:

– Strategy π1: pj mines on top of block B1.
– Strategy π2: pj mines on top of block B0.

Under strategy π1, the expected return of mining pool pj for the next block
is equal to r1 = αjR. Under strategy π2, the expected return of mining pool pj
for the next block can be obtained as follows:

r2 = αjRsuccesspsuccess + αjRfailure · pfailure . (28)

The expected return is composed of two parts: the return when the mining pool
pj wins the fork race against target block B1, and the return when the mining
pool pj loses the fork race. According to the proof of Lemma 8, the expected
return under winning the fork race is equal to Rsuccess = αj(1− αi)(1 + br1)R.
However, if the mining pool pj loses the fork race, despite losing the block reward,
it can collect the bribe deposited in the smart contract as it has mined a valid
rival block for block B1. Therefore, Rfailure = br1R. As a result, the total
expected return can be obtained as follows:

r2 = αj(1− αi)(1 + br1)R+ αjαibr1R . (29)

In an environment with incentivizing factor ϵ, mining pool pj follows the bribery
attack strategy over the honest strategy if r2 ≥ r1 + ϵαjR. We have:

r2 ≥ r1 + ϵαjR ⇐⇒ αj(1− αi)(1 + br1)R+ αjαibr1R ≥ αjR+ ϵαjR

⇐⇒ br1 ≥ αi + ϵ .
(30)

□

Proof (Proof of Thm. 3). According to Lemma 9, in an environment with an
incentivizing factor ϵ, any block B mined by a mining pool with mining share
αi is susceptible to a smart contract-based bribery attack if normalized bribes
are set as br1 = αi + ϵ and br2 = ϵ. Therefore, to conduct a bribery attack
on block B, the adversarial mining pool should pay the normalized bribe of
br = br1 + br2 = αi + 2ϵ. According to Thm. 2, the bribery attack is profitable
for the adversarial mining pool if αA > br. This completes the proof. □
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D.5 Markov Chain Analysis of Bribery Attack

To analyze the bribery attack, we divide the mining pools into three groups:
the adversarial mining pool, the target mining pools, and the non-target mining
pools. The target mining pools are those whose blocks are considered targets for
the bribery attack. The non-target mining pools are those whose blocks are not
considered targets for the bribery attack. We denote by αA the mining share
of the adversarial pool. Let Ptarget denote the set of N target mining pools.
For each target mining pool pi ∈ Ptarget, we denote its mining share by bi. We
denote by b the total mining share of all the target mining pools in Ptarget. We
define value β as follows:

β =
∑

pi∈Ptarget

bi
1− bi

(31)

States: State S0 denotes the state in which the tip of the chain is not a target
block and all the pools are mining on the tip of the chain. State Si

1 for i ∈ [N ]9

denotes a state in which the tip of the chain is a target block mined by the
mining pool pi and the adversary has placed 2 normalized bribes br1 = bi + ϵ
and br2 = ϵ for orphaning the chain tip. According to Thm. 3, these bribes
incentivizes all the petty-compliant mining pools except for the target pool pi
to mine a rival block. State Si

2 for i ∈ [N ] denotes a state in which a rival block
is mined for the target block of mining pool pi. Let P0, P i

1, and P i
2, for i ∈ [N ],

denote the probability of being at states S0, Si
1, and Si

2, respectively.
We assume the smart contract of the bribery attack is designed such that

br1 is payable only upon mining a rival block, and br2 is payable only upon
mining a non-adversarial block supporting the rival block. In all other cases, the
adversarial mining pool is able to clear the bribes.
State transitions:

– Let S0 be the current state. If the adversarial mining pool mines a new tip
block, it immediately publishes the block, and all the mining pools accept
the block. The system remains in the same state.

– Let S0 be the current state. If a non-target mining pool mines and publishes
a new tip block, all the mining pools accept the block. The system remains
in the same state.

– Let S0 be the current state. If a target mining pool pi mines a new tip
block Btarget

1 , this block is considered a target for the bribery attack. The
adversarial mining pool places two normalized bribes br1 = bi+ϵ and br2 = ϵ
for orphaning Btarget

1 . The system transitions to state Si
1. At the new state

Si
1, mining pool pi and the adversarial mining pool mine on top of block

Btarget
1 , while the other mining pools mine on top of the parent of block

Btarget
1 to mine a rival block.

– Let Si
1 be the current state. If the adversarial mining pool mines the next

block, which is a block that extends Btarget
1 , it immediately publishes the

block and clears the previous bribes. In this case, all mining pools adopt the
9 We define [N ] to be {1, 2, . . . , N}.
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chain ending at the adversarial block, and the system transitions to state
S0.

– Let Si
1 be the current state. If any petty-compliant pool except pi mines the

next block, which is a rival block to Btarget
1 , it immediately publishes the

block and collects the bribe br1 = bi+ ϵ. The system transitions to state Si
2.

At this new state Si
2, all the mining pools except pi mine on the rival block.

– Let Si
1 be the current state. If mining pool pi mines the next block Btarget

2 ,
which extends Btarget

1 , all the mining pools accept the chain ending at the
previous target block Btarget

1 , and the adversary clears the previous bribes.
The adversarial mining pool places new bribes for orphaning the new target
block Btarget

2 . The system remains in the same state.

– Let Si
2 be the current state. If the adversarial mining pool mines the next

block, which is a block that extends the rival block, the adversary immedi-
ately publishes the block and clears the second bribe br2 = ϵ. All the mining
pools adopt the rival fork ending at the adversarial block10, and the system
transitions to state S0.

– Let Si
2 be the current state. If a non-target mining pool mines the next

block, which is a block that extends the rival block, it publishes the block
and collects the bribe br2 = ϵ. All the mining pools adopt the rival fork
ending at the non-target block, and the system transitions to state S0.

– Let Si
2 be the current state. If a target mining pool pj , where pj differs from

pi, mines the next block Btarget
2 , which is a block that extends the rival

block, it publishes the block and collects the bribe br2 = ϵ. All the mining
pools adopt the rival fork ending at the rival block. The adversarial mining
pool places new bribes for orphaning the new target block Btarget

2 , and the
system transitions to state Sj

1.

– Let Si
2 be the current state. If the target mining pool pi mines the next block

Btarget
2 , which is a block that extends the target block Btarget

1 , it publishes
the block, and the adversarial mining pool clears the bribe br2 = ϵ. All the
mining pools adopt the target fork ending at the first target block Btarget

1 .
The adversarial mining pool places new bribes for orphaning the new target
block Btarget

2 , and the system transitions to state Si
1.

The state transition probabilities, the expected profit of the adversarial pool
for each state transition, and the number of blocks added for each state transition
are described in Table 5.

10 According to Lemma 2, if the mining share of the target mining pool pi is less than
0.4302, it adopts the longer rival fork
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Table 5: State transitions under the bribery attack.
Initial State Next State Transition Probability Total Blocks Added Adversary Expected Profit

S0

S0 αA 1 1

S0 1− b− αA 1 0

Si
1 bi 0 0

Si
1

S0 αA 2 1

Si
1 bi 1 0

Si
2 1− αA − bi 0 −bi − ϵ

Si
2

S0 αA 2 1

S0 1− b− αA 2 −ϵ

Si
1 bi 1 0

Sj
1 (j ̸= i) bj 1 −ϵ

Based on the transition probabilities mentioned in Table 5, we can obtain
the state probabilities as follows:

P0 =
1− b+ αAβ

1 + β

P i
1 =

bi
(1− bi)(1 + β)

,

P i
2 =

bi(1− αA − bi)

(1− bi)(1 + β)
.

(32)

According to Table 5, the reward share RA of the adversarial pool under the
bribery attack can be obtained as follows:

RA =
αA −

∑N
i=1

(
P i
1(1− αA − bi)(bi + ϵ) + P i

2(1− αA − bi)ϵ
)

P0(1− b) +
∑N

i=1

(
P i
1(bi + 2αA) + P i

2(2− b)
) . (33)

D.6 Markov Chain Analysis of Undercutting Attack

To analyze the undercutting attack, we divide the mining pools into three groups:
the adversarial mining pool, the target mining pools, and the non-target mining
pools. The target mining pools are those whose blocks are considered targets for
the undercutting attack. The non-target mining pools are those whose blocks are
not considered targets for the undercutting attack. We use the same notations
as in App. D.5. Whenever a target block is mined, the adversarial mining pool
attempts to undercut the target block. If the adversary successfully mines a rival
block, it places a bribe of ϵ on top of the rival block to incentivize all mining
pools, except the miner of the target block, to mine on top of the rival block.
States: State S0 denotes the state in which the tip of the chain is not a target
block and all the pools are mining on the tip of the chain. State Si

1 for i ∈ [N ]
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denotes a state in which the tip of the chain is a target block mined by the
mining pool pi, and the adversarial mining pool is attempting to undercut the
chain tip. State Si

2 for i ∈ [N ] denotes a state in which the adversary has mined
a rival block for the target block of mining pool pi and placed a bribe of br = ϵ
on top of the rival block. Let P0, P i

1, and P i
2, for i ∈ [N ], denote the probability

of being at states S0, Si
1, and Si

2, respectively.
State Transitions:

– Let S0 be the current state. If the adversarial mining pool mines a new tip
block, it immediately publishes the block, and all mining pools accept it.
The system remains in the same state.

– Let S0 be the current state. If a non-target mining pool mines and publishes
a new tip block, all mining pools accept it. The system remains in the same
state.

– Let S0 be the current state. If a target mining pool pi mines a new tip
block Btarget

1 , this block becomes the target for the undercutting attack.
The system transitions to state Si

1. At Si
1, all non-adversarial mining pools

mine on top of Btarget
1 , while the adversarial mining pool mines on the parent

block of Btarget
1 to create a rival block.

– Let Si
1 be the current state. If the adversarial mining pool mines a rival block

for Btarget
1 , it immediately publishes the block and places a bribe br = ϵ on

top of it. The system transitions to state Si
2. At Si

2, all mining pools except
pi mine on top of the rival block.

– Let Si
1 be the current state. If a non-target mining pool mines a block ex-

tending Btarget
1 , it publishes the block, and all mining pools adopt the chain

ending at this non-target block. The system transitions to state S0.
– Let Si

1 be the current state. If a target mining pool pj , where pj ̸= pi, mines
a block Btarget

2 extending Btarget
1 , it publishes the block. The adversarial

mining pool then adopts Btarget
1 and attempts to undercut Btarget

2 . The
system transitions to state Sj

1.
– Let Si

1 be the current state. If the target mining pool pi mines a block
Btarget

2 extending Btarget
1 , it publishes the block. The adversarial mining

pool continues to target Btarget
2 while attempting to undercut it. The system

remains in state Si
1.

– Let Si
2 be the current state. If the adversarial mining pool mines a block

extending the rival block, it immediately publishes the block and clears the
bribe br = ϵ. All mining pools adopt the rival fork, and the system transitions
to state S0.

– Let Si
2 be the current state. If a non-target mining pool mines a block ex-

tending the rival block, it publishes the block and collects the bribe br = ϵ.
All mining pools adopt the rival fork, and the system transitions to state S0.

– Let Si
2 be the current state. If a target mining pool pj , where pj ̸= pi, mines

a block Btarget
2 extending the rival block, it publishes the block and collects

the bribe br = ϵ. The adversarial mining pool adopts Btarget
1 and attempts

to undercut Btarget
2 . The system transitions to state Sj

1.
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Table 6: State transitions under the undercutting attack.
Initial State Next State Transition Probability Total Blocks Added Adversary Expected Profit

S0

S0 αA 1 1

S0 1− b− αA 1 0

Si
1 bi 0 0

Si
1

Si
2 αA 0 0

S0 1− b− αA 2 0

Sj
1(j ∈ [N ]) bj 1 0

Si
2

S0 αA 2 2

S0 1− b− αA 2 1− ϵ

Si
1 bi 1 0

Sj
1 (j ̸= i) bj 1 1− ϵ

– Let Si
2 be the current state. If the target mining pool pi mines a block Btarget

2

extending Btarget
1 , it publishes the block. The adversarial mining pool clears

the bribe br = ϵ, adopts Btarget
1 , and attempts to undercut Btarget

2 . The
system transitions to state Si

1.

The state transition probabilities, the expected profit of the adversarial pool
for each state transition, and the number of blocks added for each state transition
are described in Table 6. Based on the transition probabilities mentioned in
Table 6, we can obtain the state probabilities as follows:

P0 = 1− b(1 + αA)

P i
1 = bi ,

P2 = αAbi .

(34)

According to Table 6, the reward share RA of the adversarial pool under the
undercutting attack can be obtained as follows:

RA =
P0αA +

∑N
i=1

(
P i
2(2αA + (1− αA − bi)(1− ϵ))

)
P0(1− b) +

∑N
i=1

(
P i
1(2− 2αA − b) + P i

2(2− b)
) . (35)

D.7 Naive Solutions to Mitigate the Bribery Attack

The introduction of the bribery attack raises the question of how a petty-
compliant mining pool can defend against this attack. As discussed in the pre-
vious section, conducting a bribery attack requires a higher budget in a setting
with unknown miners. This suggests that if a petty-compliant mining pool does
not reveal its identity in the block, the probability of being targeted by a bribery
attack decreases. This strategy is particularly useful for smaller mining pools,
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which are more susceptible to bribery attacks. However, not disclosing its iden-
tity in the coinbase transaction does not guarantee complete concealment for the
mining pool. For instance, petty-compliant mining pools may conduct network
analyses to identify the miner of a targeted block. Moreover, if the remaining
petty-compliant pools, especially the largest ones, continue to reveal their iden-
tity in their blocks, it becomes easier to detect whether a block is mined by one
of the largest pools or by a smaller pool prone to the bribery attack.

Another potential solution for petty-compliant mining pools is to engage
in commitment games. To protect their blocks, they can submit commitments
offering incentives to mining pools that support their block in the event of a
fork race. However, this approach ties Bitcoin’s security to commitments that
typically occur outside the Bitcoin framework. Furthermore, the presence of such
commitments may encourage other petty-compliant mining pools to initiate fork
races to access the funds deposited in those commitments. For instance, other
petty-compliant mining pools may intentionally disrupt block propagation in the
network to increase the likelihood of a fork race occurring.

D.8 Smart Contract-Based vs. Whale Transaction-Based Bribery
Attacks

One of the advantages of the smart contract-based bribery attack is that there is
no need for the adversarial mining pool to commit to its strategy to incentivize
the petty-compliant mining pools to follow the attack strategy.

In the whale transaction-based attack, the mining pool pj must trust the
assumption that the adversarial mining pool will mine on top of the rival block
rather than the target block in the case of a fork race. This assumption is nec-
essary as the dominant strategy for the adversarial mining pool is to mine on
top of the target block. This is because once a rival block is mined and a fork
race is created, the attack is considered successful from the perspective of the
adversarial mining pool regardless of the fork race outcome, as one of the blocks
will be orphaned. In this case, mining on top of the target block is the domi-
nant strategy for the adversarial mining pool because it can invalidate the bribe
transaction in the rival block and avoid paying the bribe. This illustrates that if
the adversarial mining pool does not commit to the strategy of mining on top
of the rival block in the whale transaction-based attack, the total mining share
that mines on top of the targeted block becomes equal to αi + αA, resulting in
unprofitability of the attack from the perspective of the petty-compliant mining
pool pj .

However, in the smart contract-based attack, the adversarial mining pool is
not incentivized to mine on top of the target block in the case of a fork race. This
is because the bribe br1 will be paid to the miner of the rival block regardless
of the fork race result. Therefore, in contrast to the whale transaction-based
attack, there is no hope for the adversarial mining pool to reclaim the bribe
br1 by mining on top of the target block. Also, regarding the bribe br2, the
adversarial mining pool has no preference between the rival block and the target
block to mine on top of. If the adversarial mining pool mines on top of the
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target block, no petty-compliant mining pool can withdraw the bribe br2 from
the smart contract. If it mines on top of the rival block, the adversarial mining
pool will be eligible to withdraw br2 from the smart contract. Therefore, in both
scenarios, the adversarial mining pool can reclaim br2. This indicates that in the
smart contract-based attack, mining on top of the rival block dominates mining
on top of the target block for the adversarial mining pool.

To make mining on top of the rival block strongly dominate mining on top of
the target block, the adversarial mining pool can increase the bribe for the rival
block from br1 = αi+ϵ to br1 = αi+2ϵ, where the petty-compliant miner of the
rival block can use the extra bribe of ϵ to incentivize the adversarial mining pool
to mine on top of the rival block. To be more precise, the adversarial mining pool
deposits br1 = αi+2ϵ and br2 = ϵ in the smart contract, where both bribes br1
and br2 can be withdrawn by the adversarial mining pool after the expiration
of a time lock. During this time lock, if a petty-compliant mining pool mines a
valid rival block, it withdraws αi + ϵ of bribe br1, and the rest of bribe br1 gets
deposited as br3 = ϵ in the smart contract without any time lock. The mining
pool that mines on top of the rival block is eligible to withdraw both br2 and
br3, resulting in a total bribe of 2ϵ. In this case, if the adversarial mining pool
mines on top of the rival block, it receives 2ϵ. But, if it mines on top of the target
block, it would only be able to withdraw br2 = ϵ after the time lock, indicating
that mining on top of the rival block strongly dominates mining on top of the
target block.

D.9 The Impact of DAM on the Profitability of Selfish Mining and
Bribery Attacks

The profitability of an adversarial mining pool that engages in selfish mining or
bribery attacks is mainly due to the destruction of a portion of the network’s
mining power. This mining power destruction leads to the reduced total effec-
tive mining power of the network. To balance the network’s throughput, the
difficulty adjustment mechanism lowers the mining difficulty to align with the
reduced active mining power. As a result of this reduction in mining difficulty,
the block generation rate of the adversarial poll increases, thereby enhancing its
profitability.

Each Bitcoin epoch is defined as the duration in which a total of L = 2016
blocks are added to the canonical chain. At the end of each epoch, the difficulty
adjustment mechanism sets the mining difficulty for the upcoming epoch based
on the duration of the past epoch. If a bribing or selfish mining attack occurs
during an epoch, some blocks become orphaned, leading to an increase in the
epoch’s duration and a decrease in the canonical block generation rate. As a
result, the difficulty adjustment mechanism at the end of the epoch reduces the
mining difficulty for the next epoch to restore the canonical block generation
rate. Selfish mining and bribery attacks exploit a bottleneck in the difficulty ad-
justment mechanism, which fails to distinguish between a portion of the mining
power being offline or being wasted due to an attack. The current Bitcoin diffi-
culty adjustment mechanism balances the mining difficulty based on the effective
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mining power, defined as the mining power that extends the canonical chain and
does not contribute to any other blocks outside the canonical chain. The advan-
tage of this approach is that it maintains a nearly constant block generation rate
and transaction throughput.

However, it is possible to design a difficulty adjustment mechanism that
aligns the difficulty based on active mining power, which is defined as all the
mining power used to mine both canonical and non-canonical blocks. A diffi-
culty adjustment mechanism that precisely estimates the active mining power
can disincentivize adversarial mining pools from conducting selfish or bribery
attacks. This is because, no matter how many blocks the adversarial mining
pool manages to orphan, the difficulty adjustment mechanism would account for
the total active mining power and would not reduce the mining difficulty. This
lack of difficulty reduction deters petty-compliant mining pools from engaging
in adversarial behaviors such as selfish mining or bribery attacks.

Although the second approach to designing difficulty adjustment mechanisms
can be beneficial to a network of petty-compliant miners, it cannot completely
mitigate the mining power destruction attacks. First, this type of DAM is in-
effective against a Byzantine mining pool that disregards profitability and acts
maliciously only to disrupt blockchain progress. For example, a Byzantine mining
pool can exploit the active mining power-based DAM to reduce the transaction
throughput. Additionally, there is the critical question of how to design a DAM
that accurately estimates active mining power. Papers [38] and [41] propose so-
lutions for calculating active mining power by incorporating the counts of both
canonical and orphan blocks into the difficulty adjustment mechanism. In these
solutions, the difficulty for the next epoch is calculated based on the total num-
ber of orphaned and canonical blocks in the previous epoch. Orphan blocks serve
as valid proof of mining power loss. However, it is not always possible to pro-
vide the DAM with such proof. For instance, if a portion of the mining power
is directed toward a platform other than Bitcoin, valid proof of mining power
loss cannot be provided unless the Bitcoin blockchain decides to trust external
platforms.

E Mining Power Distraction Attack

In this section, we present an attack referred to as the mining power distraction
attack, which is capable of destroying a portion of the network’s mining power
without producing any evidence of mining power destruction.

In the distraction attack, the adversarial mining pool aims to distract a por-
tion of mining power from mining on top of the canonical chain by incentivizing
them to mine on another platform. Since the distracted mining power contributes
to a work that is only valid outside the Bitcoin framework, one cannot prove the
validity of work to the difficulty adjustment mechanism of Bitcoin. Therefore,
even a DAM that balances the difficulty with the active mining power cannot
disincentivize the payoff-maximizing mining pools from performing the mining
power distraction attack.
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The general idea behind the attack is that once the adversarial mining pool
mines a block under Bitcoin difficulty, denoted by D1, it does not publish the
block to the other mining pools. Instead, it conveys the following message to
them: "I have already mined the next block of the canonical chain. If you want
to know the contents of this block, you must submit a valid proof of work under
difficulty D2, where D2 < D1." We will later discuss the details of how to convey
this message and why mining pools should trust it. For now, let us assume that
the petty-compliant mining pools accept the existence of a hidden block that
extends the canonical chain. This situation puts them in a dilemma: on one hand,
if they continue mining on top of the public chain and successfully mine the next
block, it will enter a fork race with the adversarial block. On the other hand, if
they wish to access the adversarial block, they need to waste a portion of their
mining power to solve a puzzle with difficulty D2. We will demonstrate that by
selecting an appropriate value for D2, the adversarial mining pool can incentivize
the petty-compliant mining pools to choose the latter option, thereby wasting
some of their mining power on a puzzle defined outside the Bitcoin framework.
Our distraction attack can be considered an extension of the blockchain denial-
of-service (BDoS) attack introduced in [31]. The description of the BDoS attack
and its differences from our distraction attack are presented in E.3. The BDoS
attack primarily affects mining pools whose revenue is only marginally higher
than their mining costs and is ineffective against miners with a higher profit-
to-loss ratio. In contrast, our distraction attack can disincentivize mining on
Bitcoin, even under the assumption that mining costs are negligible.

Attack Description. Let D1 denote the Bitcoin mining difficulty. Once the
adversarial mining pool mines a block, it deploys a smart contract on an external
blockchain platform. This smart contract defines a mining puzzle that is similar
to the Bitcoin puzzle, with the difference that the puzzle difficulty is D2, which
is less than D1. We refer to the solution to this easier puzzle as mini-PoW.
The smart contract is designed so that if anyone submits a valid mini-PoW, the
adversarial mining pool should publish its hidden Bitcoin block; otherwise, it will
lose a significant deposit. The adversarial mining pool deposits three normalized
bribes of values br1, br2, and br3 in the smart contract. If a user submits a mini-
PoW and the adversarial mining pool does not reveal the hidden block within a
short time (indicating dishonesty of the claim of having a Bitcoin block), the user
is eligible to withdraw br1. If a user submits a mini-PoW and the adversarial
mining pool immediately reveals its hidden Bitcoin block (indicating honesty),
the user is eligible to withdraw br2. If a user mines a supporting block on top of
the adversarial block during the fork race, the user is eligible to withdraw br3.

The smart contract stores two sets of parameters. The first set relates to the
Bitcoin chain and includes: the hash of the head of the canonical chain from
the perspective of petty-compliant mining pools, denoted by H1; the Bitcoin
mining difficulty D1; and a commitment to the hash of the adversarial hidden
block, denoted as Hash(HA). The second set of parameters is used to construct
a mini-PoW puzzle and includes: a random value serving as a parent block
hash H2; a random value serving as a block Merkle root, denoted as MR2; and
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a mining difficulty D2. The values H2, MR2, and D2 are selected randomly to
prevent mining pools from using Bitcoin block PoW solutions as a valid mini-
PoW solution. The smart contract satisfies the following conditions:

– If a user submits nonce2 that satisfies the inequality Hash
(
H2, MR2, nonce2

)
≤

1
D2

(successfully mines a mini-PoW), a time lock is activated. If, before the
expiration of the time lock, the smart contract deployer submits nonce1 and
a Merkle root MR1 that satisfies the inequality Hash

(
H1, MR1, nonce1

)
≤ 1

D1

(reveals the hidden block11), the user can withdraw br2; otherwise, it can
withdraw a larger bribe of br1.

– If a user submits a piece of proof for mining a valid supporting block on top
of the adversarial block during the fork race, they can withdraw br3. The
user should submit H3, nonce3, and MR3 that satisfy the equality Hash(H3) =
Hash(HA) and the inequality Hash

(
H3, MR3, nonce3

)
≤ 1

D1
.

Lemma 10. Assume the adversarial mining pool has no hidden block to reveal
upon the submission of a valid mini-PoW. In an environment with incentivizing
factor ϵ, the petty-compliant mining pools are incentivized to mine for a mini-
PoW rather than a Bitcoin block if br1 ≥ D2

D1
(1 + ϵ).

Proof. Let λ1 denote the Bitcoin mining rate. In this case, the mini-PoW mining
rate is equal to λ2 = D1

D2
. The expected return of mining a Bitcoin block for

mining pool pj is equal to r1 = αjλ1R. The expected return of mining a mini-
PoW for mining pool pj is equal to r2 = αjλ2br1R. The mining pool pj is
incentivized to mine a mini-PoW if r2 ≥ r1 + ϵαjλ1R. We have:

r2 ≥ r1 + ϵαjλ1R ⇐⇒ D1

D2
br1 ≥ 1 + ϵ ⇐⇒ br1 ≥ D2

D1
(1 + ϵ) . (36)

□

Lemma 11. Let D1 denote the Bitcoin mining difficulty. Consider an adversar-
ial mining pool with a mining share αA, which offers a normalized bribe br for
mining each mini-PoW of difficulty D2. Assume k represents the average number
of valid mini-PoW solutions mined per epoch during the distraction attack. If no
adversarial block is orphaned, the time-averaged profit of the adversarial mining
pool under the distraction attack exceeds its profit under the honest strategy for
any value of k, as long as br < D2

D1
αA.

Proof. The proof is similar to the proof of Thm. 2 presented in D.1. Since k mini-
PoW solutions are mined per epoch, an expected D2

D1
k non-adversarial blocks

are wasted per epoch, which must be replaced by new blocks. Of these new
D2

D1
k blocks, αA

D2

D1
k are adversarial. Therefore, the time-averaged profit of the

distraction attack can be obtained as follows:

ProfitDistraction =
Rev − Cost
duration

=
λ
(
αA(L+ D2

D1
k)R− kbrR

)
L

=

λαAR+
λkR

L
(
D2

D1
αA − br) .

(37)

11 In App. E.4, we discuss a smart contract that also forces revealing transactions.
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The time-averaged profit of honest mining is equal to ProfitH = λαAR. The
distraction attack can strongly dominate the honest strategy if the following
inequalities hold:

ProfitDistraction > ProfitH ⇐⇒ λαAR+
λkR

L
(
D2

D1
αA − br) > λαAR

⇐⇒ D2

D1
αA > br .

(38)

□

According to Lemma 10, if the adversary has no hidden Bitcoin block to reveal,
it must set the bribe for each mini-PoW to br1 = D2

D1
(1+ϵ) to incentivize miners

to comply with the distraction attack. However, Lemma 11 shows that for the
distraction attack to be profitable for the adversary, the maximum bribe the
adversary can offer per mini-PoW is D2

D1
αA, which is less than br1. Therefore,

as expected, if the adversary has no hidden block, the distraction attack is not
profitable for him. For the distraction attack to be profitable, upon submission
of a valid mini-PoW, the adversary must be able to reveal a valid Bitcoin block.
In this case, rather than offering a large bribe of br1 = D2

D1
(1 + ϵ), each mini-

PoW receives a reward br2, which, according to Lemma 11, should be set to
br2 < D2

D1
αA.

To demonstrate the feasibility of the distraction attack, we need to show that
even if the adversary has a hidden Bitcoin block, petty-compliant pools are still
incentivized to mine mini-PoWs with a reward br2 < D2

D1
αA instead of Bitcoin

mining. To do this, we must compare the expected returns of Bitcoin mining
and mini-PoW mining for a petty-compliant mining pool pi.

E.1 Expected Return Calculations

Let rmini-PoW and rBitcoin denote the expected returns of petty-compliant pool
pi for mini-PoW mining and Bitcoin mining, respectively, under the assumption
that the adversary has a hidden block to reveal. In an ϵ-semi-rational environ-
ment, the petty-compliant mining pool pi is incentivized to mine a mini-PoW
if the following inequality holds: rmini-PoW ≥ rBitcoin + ϵαiλR. We define the
normalized expected return difference as

∆ =
rmini-PoW − rBitcoin

αiλR
. (39)

If ∆ ≥ ϵ, mining a mini-PoW is the dominant strategy for mining pool pi. We
also define the difficulty ratio d as the ratio of Bitcoin difficulty to mini-PoW
difficulty, i.e., d = D1

D2
, where d ≥ 1 by construction. We consider 4 different

mining pools: the adversarial mining pool with mining share αA, the petty-
compliant mining pool pi with mining power αi that wants to decide which
puzzle is more profitable, the set of compliant mining pools with total mining
share of αC that always mines a mini-PoW (if available), and the set of non-
compliant mining pools with total mining share of αNC that always mines a
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Bitcoin block. Note that, under this attack, there is a possibility that some
mining pools may decide to stop mining. We do not consider this scenario, as
their decision to stop mining would signify the attack’s success.

There are 3 different states that can take place: state s0 where all the mining
pools mine on top of the Bitcoin longest chain, state s1 where the adversarial
mining pool has a hidden Bitcoin block and the hash distraction contract is
published, and state s2 where there is a fork race between the adversarial block
and a semi-rational block. According to the attack description, there is a bribe
of br3 = ϵ on top of the adversarial fork in state s2. The state transitions are
depicted in Figures 6a and 6b. For the sake of calculation simplicity, we assume
if the adversarial mining pool mines a block in the state s1 (mines 2 consecutive
blocks), it will publish its first hidden block and repeat the attack with its second
block. The petty-compliant pool pi needs to decide on its action in state s1: mine
a Bitcoin PoW or mine a mini-PoW.

In the first scenario, we consider the case that the petty-compliant pool pi
mines a mini-PoW. The puzzle mining rate at states s0 and s2 are the same as
λ. However, the puzzle mining rate at state s1 is equal to λ1 =

(
d(αC + αi) +

αNC + αA
)
λ. The transition probabilities depicted in Fig. 6a can be obtained

as follows:

α′
i =

dαi

d(αC + αi) + αNC + αA
, α′

C =
dαC

d(αC + αi) + αNC + αA
,

α′
A =

αA

d(αC + αi) + αNC + αA
, α′

NC =
αNC

d(αC + αi) + αNC + αA
.

(40)

The state probabilities can be calculated as follows:

p0 =
1− α′

A
1− α′

A + αA(1 + α′
NC)

, p1 =
αA

1− α′
A + αA(1 + α′

NC)
,

p2 =
αAα

′
NC

1− α′
A + αA(1 + α′

NC)
.

(41)

The expected return of mining a min-PoW for pool pi is equal to

r1 = αip0λR+ αip2(1 + br3)λR+ α′
ip1br2λ1R . (42)

(a) Mining a mini-PoW (b) Mining a Bitcoin block
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In the second scenario, we consider the case that the petty-compliant pool pi
mines a Bitcoin block. The puzzle mining rate at states s0 and s2 are the same
as λ. However, the puzzle mining rate at state s1 is equal to λ1 =

(
dαC + αi +

αNC + αA
)
λ. The transition probabilities depicted in Fig. 6b can be obtained

as follows:

α′
i =

αi

dαC + αi + αNC + αA
, α′

C =
dαC

dαC + αi + αNC + αA
,

α′
A =

αA

dαC + αi + αNC + αA
, α′

NC =
αNC

dαC + αi + αNC + αA
.
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The state probabilities can be calculated as follows:

p0 =
1− α′

A
1− α′

A + αA(1 + α′
NC + α′

i)
, p1 =

αA

1− α′
A + αA(1 + α′

NC + α′
i)

,

p2 =
αA(α

′
NC + α′

i)

1− α′
A + αA(1 + α′

NC + α′
i)

.

(44)

The expected return of mining a Bitcoin block for pool pi is equal to

r2 = αip0λR+ αip2(
α′
NC

α′
NC + α′

i

)(1 + br3)λR+ 2αip2(
α′
i

α′
NC + α′

i

)λR . (45)

E.2 Quantitative Analysis of the Distraction Attack

For an adversarial mining power share of αA = 0.4 and the mini-PoW mining
reward of br2 = 0.1 × αA, Fig. 7a represents the normalized expected return
difference ∆ of a petty-compliant pool based on its mining share, for different
values of the difficulty ratio d. As can be seen, for an incentivizing factor of
ϵ = 0.02, all petty-compliant mining pools prefer mini-PoW mining over Bitcoin
mining if the difficulty ratio is set to d ≥ 5. Note that, as the mini-PoW mining
reward is set to 1

10 of the adversarial mining share, according to Lemma 11, the
maximum difficulty ratio that can result in a profitable distraction attack for the
adversary is d = 10. For the same mini-PoW reward, the smaller the difficulty
ratio, the more profitable the distraction attack would be for the adversary.
However, setting the difficulty ratio to a low value limits the portion of petty-
compliant miners who follow mini-PoW mining.

Figure 7b depicts the percentage increase in the adversarial reward share
as a function of the mining share of the largest non-adversarial mining pool in
the network, for a mini-PoW mining reward of br2 = 0.1 × αA and ϵ = 0. To
generate Fig. 7b, we calculated the minimum difficulty ratio that makes mini-
PoW mining the dominant strategy for all petty-compliant mining pools. Using
this difficulty ratio, we then determined the corresponding adversarial reward
share. In App. E.5, we discuss how the distraction attack can be further extended
to be applicable using non-adversarial blocks.
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(a) Mini-PoW mining vs Bitcoin mining. (b) Percentage increase in reward share.

Fig. 7: Quantitative analysis of the distraction attack.

E.3 BDoS Attack Description

Let B0 denote the tip of the canonical chain. In the BDoS attack, when the
adversary mines a new block B1 on top of B0, it only publishes the header of
block B1. As a result, other miners are unable to mine on top of B1 since they
cannot confirm the correctness of the transactions included in it. This situation
places miners in a dilemma: whether to stop mining or continue mining on top
of block B0. Mining on top of B0 is risky; if they successfully mine another
block on top of it, that block will enter a fork race with block B1, potentially
leading to it being orphaned. Under a BDoS attack, a victim pool may decide
to stop mining, depending on the mining costs incurred. If the mining reward is
significantly higher than the mining cost, the miner will likely continue mining on
top of block B0. The BDoS attack primarily affects mining pools whose mining
revenue is only slightly above their mining costs, making it ineffective against
miners with a higher profit-to-loss ratio. In contrast, the introduced distraction
attack can disincentivize mining on Bitcoin, even when miners assume that there
are no mining costs. In our distraction attack, once the adversarial mining pool
announces mining of the next block, other mining pools face three possibilities:
1) continue mining on top of the Bitcoin chain, 2) completely stop mining, or
3) engage in mini-PoW mining. The first two possibilities are those covered in
the BDoS attack. The third possibility, which is new to the distraction attack,
expands the effect of the attack to a broader range of mining pools rather than
only those suffering from high mining costs.

Another point regarding the BDoS attack is that the adversarial mining
pool always faces a fork race, which can result in the orphaning of its block.
However, in our distraction attack, by publishing the block after solving a mini-
PoW puzzle, the adversary can avoid the fork race and save its block while still
conducting a successful mining power destruction attack.
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E.4 Revealing Transactions

To ensure the adversary reveals block transactions, the smart contract must
provide a URL to all transactions (excluding the coinbase transaction), making
them visible to all pools. The adversarial pool must reveal the coinbase trans-
action, which includes an extra nonce, upon submitting a valid mini-PoW. The
contract should also include parameters to verify that the Merkle root of the
transactions and the coinbase transaction matches the stored Merkle root. This
smart contract allows petty-compliant mining pools to verify the correctness of
block transactions before starting mini-PoW mining.

E.5 Distraction Attack Using the Non-Adversarial Blocks

In Sect. E, we analyzed the mining power distraction attack conducted by an ad-
versarial mining pool using its own blocks. In the extended attack, the adversarial
mining pool incentivizes a petty-compliant mining pool to only publish its block
to the adversarial mining pool while hiding it from the other petty-compliant
mining pools. The block gets revealed to other petty-compliant mining pools
only upon receiving a valid mini-PoW.

Attack Description. The adversarial mining pool requests a petty-compliant
mining pool to only share its block B with the adversarial mining pool. Once
the adversarial pool verifies the validity of block B, it deploys the same contract
as mentioned in Sect. E for block B, where block B is hidden from all petty-
compliant mining pools except for its miner. In addition to the 3 bribes discussed
in Sect. E, the adversarial mining pool deposits another normalized bribe br4 = ϵ
in the smart contract. The miner of block B is eligible to withdraw br4 if a user
submits a valid mini-PoW.

Note that in this attack, there is no need for the miner of block B and
the adversarial mining pool to trust each other as the attack is risk-free for
both of them. If the petty-compliant mining pool shares its block only with
the adversarial mining pool and observes that the adversarial pool does not
deploy the contract, it can promptly publish the block to all other mining pools.
Similarly, if the adversarial mining pool deploys the contract for the block but
then the block gets published by its miner, the adversarial mining pool does not
lose anything as the bribe is payable only upon the submission of a mini-PoW.
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