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Abstract. We investigate the impact of reward schemes and commit-
tee sizes on governance systems over blockchain communities. We intro-
duce a model of elections with a binary outcome space, where there is
a ground truth (i.e., a “correct" outcome), and where stakeholders can
only choose to delegate their voting power to a set of delegation repre-
sentatives (DReps). Moreover, the effort (cost) invested by each DRep
positively influences both (i) her ability to vote correctly and (ii) the total
delegation that she attracts, thereby increasing her voting power. This
model constitutes a natural counterpart of delegated proof-of-stake (PoS)
protocols, where delegated stakes are used to elect the block builders.
As a way to motivate the representatives to exert effort, a reward scheme
can be used based on the delegation attracted by each DRep. We ana-
lyze both the game-theoretic aspects and the optimization version of this
model. Our primary focus is on selecting a committee that maximizes the
probability of reaching the correct outcome, given a fixed monetary bud-
get allocated for rewarding the delegates. Our findings provide insights
into the design of effective reward mechanisms and optimal committee
structures (i.e., how many DReps are enough) in these PoS-like gover-
nance systems.

Keywords: Nash equilibria · reward schemes · effort games.

1 Introduction

Our work falls under the broader topic of selecting an appropriate set of represen-
tatives out of a voting population. This has been a prominent research agenda
in social choice theory over the years and has been already investigated from
various angles. As indicative directions, the performance of randomly selected
committees has been extensively studied and there also exist various formula-
tions of finding the optimal number of representatives either as an optimization
problem or via game-theoretic models (described in our related work section).
At the same time this is also complemented by empirical research and the study
of real world practices, spanning a horizon of several decades, see e.g. [23].

⋆ Work done while at IOG. Email: plazos@gmail.com
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We focus on addressing such questions for governance systems in Proof-of-
Stake (PoS) blockchain protocols (see e.g. [14]). Several blockchain communi-
ties have already implemented or are currently designing governance policies,
where stakeholders can propose a referendum on any relevant issue, which can
then lead to an election. We believe there are some important aspects that can
jointly differentiate such elections from other more traditional settings. First, in
blockchain communities, voting among stakeholders is usually a weighted vot-
ing process, with the voting power corresponding to the stake owned by each
user. This moves away from the classic “one person-one vote" paradigm, which
cannot be enforced due to the anonymity of users (someone could vote with sev-
eral identities by splitting her stake). Secondly, in some blockchains, elections
are implemented only by delegating voting power to representatives (known a
priori) who will then vote with a weight equal to their total delegation they
collected. This is done both in order to avoid having a huge number of trans-
actions in the long run (a delegation can remain valid for future elections too,
for as long as the user wants) but also to give the option to users who are not
well-informed on an election topic to transfer their rights to someone that they
trust their opinion. Third, it has been acknowledged that the users who act as
representatives should be given some monetary compensation. The reason for
this is two-fold. Representatives need to exert an effort to advertize their opin-
ion and attract voters. But more importantly, the elections under consideration
may often concern a technical topic (like protocol parameter changes), where
the representatives may need to spend time so as to become more informed and
shape an opinion.

The features highlighted in the previous discussion, motivate various interest-
ing questions for the design of appropriate policies. In particular, an important
question that arises is how to design a reward scheme for the representatives,
given an available budget. What are the relevant parameters that the reward
should depend on? Ideally, we would like a reward scheme to induce good qual-
ity Nash equilibria, meaning that the representatives are incentivized to exert
a sufficient amount of effort so that their vote contributes to making a good
decision for the blockchain protocol. Therefore the rewards need to account for
the fact that effort can be costly. At the same time, another relevant question is
to understand how many representatives can be enough under such a scenario.
Qualitatively, what we are interested in is whether a relatively small set of rep-
resentatives can be sufficient or whether a large number of them is necessary to
ensure a good election outcome, i.e., to ensure that the weighted majority of the
representatives vote for the ground truth.

1.1 Contribution

Our work is motivated by the ongoing design of the governance system in an
actual blockchain community, namely of the Cardano cryptocurrency [1]. In Sec-
tion 2 we introduce a game-theoretic model for capturing the main aspects of the
elections under consideration. We focus on the scenario where the outcome space
is binary and there is a ground truth, i.e., there is a correct outcome (say for the
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long-term evolution of the protocol), not a priori known to the representatives.
The representatives can exert effort in order to find out the correct outcome
which however comes at a cost (for information acquisition). At the same time,
the exerted effort leads to a higher level of attracted delegations and in turn to
(potentially) higher rewards, as we focus on reward schemes that depend on the
volume of delegations (similarly to delegated PoS protocols).

In Sections 3 and 4, we analyze natural reward schemes under this setting
regarding their equilibria. In Section 3, we demonstrate, to our surprise, that
perhaps the most natural rule where the representatives split the total budget in
a proportional manner to their attracted delegations, is not so appropriate. The
reason is that it induces low quality equilibria where not enough effort is made.
In Section 4, we advocate the use of a better mechanism where rewards are given
only to voters who reach a desired threshold of delegations (and thus up to k
of them, for some parameter k). We characterize the set of pure equilibria, and
show that under any equilibrium, the representatives exert a significant effort,
and hence contribute towards electing the correct outcome. We also comment
on relevant variants of this mechanism.

As the scheme of Section 4 imposes an upper bound on the representatives
who will make an effort at equilibrium, this motivates the algorithmic question
of how to select the number of representatives. We investigate this in Section
5, as a budget constrained problem. We study various classes of cost functions
for the exerted effort, including concave, convex and concave-convex costs and
highlight the different behavior of the optimal solution under these classes. One
of our main conclusions is that in many cases, a small number of representatives
suffices for achieving a good quality outcome, e.g., this holds for concave costs
and also for concave-convex functions. Another interesting finding is that in the
convex domain the answer is heavily dependent on the available budget. Finally,
we also demonstrate our findings in Section 6 for a particular class of concave-
convex cost functions that is motivated by works on experimental psychology.

1.2 Related work

The topic of incentivizing committee members or delegates in elections to ex-
ert more effort has recently attracted attention partly due to applications over
blockchain protocols and partly due to the overall rise of proxy voting and liquid
democracy. The works most related to ours along these lines are [10], [7] and [11].
In [10], a similar cost model to ours is used for acquiring information over an
election topic. There are however substantial differences in most other modeling
aspects. In their work, a committee is chosen randomly among a given popu-
lation, and with the same voting power per member, whereas in our case the
voting power depends on the effort exerted. Secondly, they consider a different
game in which the rewards are dependent on the tally difference between the two
alternatives, which is quite different from our model, where the reward depends
on the attracted delegation. Furthermore, the payments are transfers from the
remaining population and not by some external source. In a recent follow up
work [11], a similar model to [10] is studied, but where the monetary transfers
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depend on observed information acquisition costs. In both of these works, the
particular structure of the underlying equilibria is studied and despite the differ-
ences with our setting, the conclusions made on the appropriate committee size
are qualitatively of a similar flavor. Finally, in the work of [7], a different model is
considered where the voters are categorized into well-informed and mis-informed
agents, with different cost functions each. The reward scheme considered there
is also different, with no delegation involved, and where the payments are de-
pendent on the fraction of other voters who voted the same alternative.

A different approach is taken in [3] for determining a reward scheme and a
committee size. Namely, a mechanism design model is presented where a com-
mittee is picked at random from the population, and where the rewards are
obtained as the outcome of a truthful mechanism. For the question of finding
the optimal number of representatives, there have also been other attempts that
are not based on rewarding the voters. A game-theoretic model along this direc-
tion is presented in [16]. In [21], a different model is studied where the optimal
committee set is derived as the one maximizing the probability of voting for
the correct outcome, given competence levels from some distribution. A similar
idea is also used in [15] under constraints on the feasible sets of delegates. Yet
another approach is explored in [25] by adding the dimension of a social network
for defining an optimal set of representatives in elections.

When there is no a priori ground truth, alternative methodologies within
proxy voting have also been considered for selecting a committee size. These
approaches are based on optimizing the total welfare of the electorate. As an
example, the performance of the Sortition method (randomly pick a subset of the
voters of a given size) is studied in [17]. The work [19] considers the performance
of proxy voting, focusing on understanding when the proxy-elected outcome
coincides with the outcome of direct voting. Finally, in [2] welfare guarantees are
provided for a small number of representatives under incomplete preferences.

The topic of incentivizing effort has been extensively studied in economics
within the field of contract theory [22]. The models there typically involve a
principal who can offer a contract to an agent for performing some task. Re-
cently there has been a renewed interest in such problems from an algorithmic
viewpoint, and we refer to [8] for an upcoming survey. These models however are
only distantly related to our work, as the effort there is not tied to attracting
delegations or voting power. In our model, rewards cannot depend on the “cor-
rect answer/success” as the latter cannot be verified. This contrasts with prior
contract theory (principal-agent) models, where reward schemes are tied to the
success of the project.

Finally another relevant stream of literature is in the field of prediction mar-
kets. These are markets where people can bet on contracts that pay based on
the outcomes of unknown future events. The common element with our work is
that prediction markets can be seen as a tool for discovering a future outcome
(in our case, we want to steer the agents to discover the correct outcome in an
election). Besides this somewhat common goal however, the overall approaches
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in the relevant studies are quite different. For an overview of the literature, we
refer to the book by [24] and the survey by [12].

2 Our delegation model

We are considering a voting scenario with a binary choice, consisting of a ‘good’
and a ‘bad’ outcome. This is initially unknown to laypeople voters, but delegates
are ready to step up, using their expertise and effort to steer the community
towards the right choice.

Suppose that we have n delegation representatives (DReps) competing for
votes. Each delegate can choose to exert some effort xi, which leads to two
positive effects: an increased chance of voting for the right outcome and an
increased number of voters delegating to i. In particular, an effort xi ∈ [0, 1/2]
leads to a probability of pi = 1/2 + xi for i to vote for the right outcome. At
the same time, the DRep manages to accumulate delegation (and subsequently
voting power) equal to

wi =
xi∑
j xj

, (1)

with w = (w1, . . . , wn). If none of the representatives exert any positive effort,
then we assume wi = 0 for all i. The underlying assumption here is that a more
informed and knowledgeable DRep is more likely to attract voters as well (a
different interpretation is that voters follow DReps based on their long term
performance on voting for the ‘supposedly good’ outcome). We assume that,
even after the vote, the system has no way to detect if the answer is correct
(thus rewards cannot directly depend on this information).

The effort xi also comes with a cost, described by a cost function4 c(xi),
for which we assume that it is strictly increasing, continuous and differentiable.
We will consider various cases for the cost function in the sequel, such as linear,
convex, concave, and concave-convex types observed in experimental psychology.

Remark 1. A more accurate model would be to consider two types of effort, the
effort for information acquisition and the effort to attract delegates. This in turn
would lead to having two different cost functions. We find it instructive in this
first step of studying these problems to focus on a unifying model regarding the
effort and the cost.

We focus on reward mechanisms that provide a monetary payment to each
DRep based on the delegation vector w. Such mechanisms are easy to implement
as the total attracted delegation for each DRep can be measured (the effort xi

cannot). If fi is the reward function for the payment to DRep i, her final utility
is

ui = fi (w)− c(xi) (2)

4 Following the relevant literature [10,11], we also consider a common cost function
for all voters.
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A pure Nash equilibrium for a particular combination of reward functions fi,
and cost function c is defined as an effort vector x ∈ [0, 1/2]n such that for any
player i and x′

i ̸= xi we have that: ui(x) ≥ ui(x
′
i,x−i).

Budget constraint. The total rewards given should be limited, such that given
an available budget B:

n∑
i=1

fi(w) ≤ B. (3)

Objective. Our social objective is to maximize the probability that the ‘good’
outcome is selected by the election. Since each DRep i has a voting power equal
to wi, the right outcome is selected only when the total weight of the DReps
voting correctly is at least 1/2. For the case where it is exactly 1/2, we assume
a random tie-breaking, so that the correct outcome is selected with probability
1/2. Therefore, given a profile x = (x1, x2, . . . , xn), the probability of success is
the following quantity:

Psucc(x) := Pr

[
n∑

i=1

wi ·Xi >
1

2

]
+

1

2
Pr

[
n∑

i=1

wi ·Xi =
1

2

]
, (4)

where Xi is a Bernoulli random variable with Pr [Xi = 1] = 1/2+xi. To give an
idea of how the success probability looks like as a function of x, the first term
in the right hand side of (4) equals

Pr

[
n∑

i=1

wi ·Xi >
1

2

]
=

∑
S:

∑
j wj>1/2

 ∏
i∈S:xi>0

(1/2 + xi) ·
∏

i ̸∈S:xi>0

(1/2− xi)

 .

An equivalent formulation of Psucc(x), that will be convenient in some sections
is

Psucc(x) = Pr

[
n∑

i=1

Zi > 0

]
+

1

2
Pr

[
n∑

i=1

Zi = 0

]
, (5)

where each Zi is a random variable with Pr [Zi = xi] = pxi := 1/2 + xi and
Pr [Zi = −xi] = p−xi

= 1/2−xi = 1−pxi
. The interpretation when using the Zi

variables, is that a voter i contributes a weight of xi when voting for the correct
outcome, and a weight of −xi otherwise.
Optimization benchmark. Given a cost function c(·) and budget B, the opti-
mization benchmark is defined by maximizing the probability Psucc(x), subject
to the following benchmark budget constraint :∑

i

c(xi) ≤ B . (6)

We denote the corresponding optimum as OPT (c,B) := Psucc(x
∗), where x∗ is

an optimal solution to this problem.
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Remark 2. Any reward sharing scheme that guarantees nonnegative utilities for
the DReps and the budget constraint (3) must satisfy the benchmark budget
constraint (6).

We will also consider variants with (i) symmetric efforts and (ii) a maximum
number k of DReps,

xi ∈ {x, 0} for all i and for some x (symmetry) ; (7)
|i : xi > 0| ≤ k (maximum number of DReps) . (8)

We denote by OPT ⋆(c,B) the optimum for the symmetric version (7), by
OPTk(c,B) the optimum for the one with at most k DReps (8), and by OPT ⋆

k (c,B)
the one in which we have both. By definition, the following relations hold:
OPT (c,B) ≥ OPT ⋆(c,B) ≥ OPT ⋆

k (c,B) and OPT (c,B) ≥ OPTk(c,B) ≥
OPT ⋆

k (c,B), which correspond to the optimality of symmetric solutions, and
to the optimality of a fixed number of DReps, and combinations thereof.

Finally observe that xi ≤ xmax(c,B) where xmax(c,B) is the largest x ≤ 1/2
such that c(x) ≤ B.

3 Warmup: Equilibrium Analysis of Proportional Sharing

We first analyze a very simple and natural reward mechanism where each rep-
resentative obtains a reward equal to the percentage of the overall delegation
that she accumulated, i.e., fi(w) = wi · B. Such approaches have been consid-
ered in many problems in the context of profit sharing games [4], project games
[5], contests [6], etc., due to their simplicity, and usually they also provide good
guarantees in terms of performance.

The purpose of this section is to exhibit that this reward rule is not an
appropriate incentive scheme if we are interested in maximizing the probability
of the correct outcome, in the sense that it can induce low quality equilibria.

For smooth reward functions fi and cost function c, we can derive the first
order conditions that should hold at an equilibrium. If c′ is the derivative of c,
these are

∂fi(x)

∂xi
= c′(xi),

To illustrate our negative result, let us assume that the cost function is linear,
ci(xi) = axi. We focus below on the symmetric Nash equilibria that may arise,
i.e., profiles where all players exert the same effort.

Theorem 1. The only symmetric Nash equilibrium under the proportional re-
ward sharing rule, with a linear cost function, is the strategy profile with xi =

x = B(n−1)
an2 for every i, as long as x ∈ [0, 1/2].

When the parameters B and a are constants independent of n, the next
theorem shows that for a large enough population of voters, the proportional
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sharing rule can induce bad equilibria. The reason is that the effort of each
DRep is O(1/n) as identified in Theorem 1, and hence the probability of each
DRep voting correctly is only 1/2+O(1/n). As a result, the probability of having
the correct outcome elected goes to 1/2 as n becomes large, as established below.

Theorem 2. Under the symmetric equilibrium profile of the proportional shar-
ing rule, the probability of selecting the right outcome, as n → ∞, tends to 1/2.

Remark 3. An analogous conclusion also holds for concave functions of the form
c(x) = xb, with b < 1. There the effort per player at a symmetric equilibrium
can be even worse, and bounded by O((1/n)1/b), using the same proof as in
Theorem 2.

4 Equilibrium Analysis of Threshold Mechanisms

Given the previous conclusions, we suggest that in order to incentivize the del-
egates to elect the correct outcome, we need a payment rule that induces more
competition among them, so that they need to make an effort to attract delega-
tions.

4.1 Equilibria under the Threshold(k) mechanism

Consider the mechanism where a delegate receives a reward only if she managed
to get at least a 1/k-fraction of the total delegation. The reward received by a
voter i is:

fi(wi) =

{
B/k if wi ≥ 1/k

0 otherwise
.

What kind of equilibria do we expect to have under this mechanism? Nat-
urally, we cannot have equilibria with more than k delegates exerting positive
efforts, since only up to k delegates can be paid, and the remaining would not
have any incentive to make any effort. Instead, we will see that we can have
equilibria with exactly k delegates making an effort that are also symmetric as
in (7).

The following theorem characterizes the pure Nash equilibria of the Threshold(k)
mechanism. In particular, it demonstrates that in every equilibrium the set of
players that exerts positive effort is of specific size, while it also provides specific
conditions which the efforts of the players must obey.

Theorem 3. For the Threshold(k) reward rule, every pure Nash equilibrium
must be a symmetric Nash equilibrium in which exactly k voters exert positive
effort. Moreover, for any x ∈ (0, 1/2] there exists an equilibrium where k voters
make effort equal to x if and only if one of the following conditions hold:

– either c( k
k−1x) ≥ B/k ≥ c(x) and k

k−1x ∈ (0, 1/2],
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– or B/k ≥ c(x) and k
k−1x > 1/2,

Proof (Sketch). The full proof is given in Appendix A.3. Here we just describe
the main intuition and ideas. First, no equilibrium can have more than k players
exerting positive effort (since only the k with the highest effort get rewarded).
Also, no equilibrium can have strictly less than k players exerting positive effort
(otherwise the player with highest effort can improve her utility by reducing
slightly her effort). Hence, any equilibrium must have exactly k players that exert
positive effort. Imposing that deviating to zero effort is not profitable, together
with

∑
i wi = 1, we get that all equilibria are of the form (x, . . . , x, 0, . . . , 0),

up to a renaming of the players. The bounds on c(x) are then obtained by
considering deviations restricted to equlibria of this form (and that wi ≥ 1/k is
necessary to get the reward B/k). ⊓⊔

There are some positive things that we can claim for this mechanism, show-
ing that there are some advantages against the proportional scheme. The first
one is that in all its equilibria, the DReps who decide to exert a positive ef-
fort are making a much higher effort than in the symmetric equilibrium of the
proportional scheme identified in Theorem 1. As an example, when k is much
smaller than n, and under a linear cost function, the effort in Threshold(k) can
be seen to be Ω(1/k), which is significantly higher than O(1/n) under the pro-
portional scheme, from Theorem 1. Hence we expect to have a higher probability
of selecting the correct outcome.

Secondly, the next corollary shows that equilibria always exist and in fact
all of them are close to the optimal effort under the constraint of using exactly
k DReps. This motivates further the question of identifying the optimal k for
maximizing the success probability for electing the correct outcome, which is the
focus of Section 5.

Corollary 1. Let x∗(k) be the optimal effort for the optimization benchmark in
which we impose a committee of size exactly equal to k.

– The profile where k people exert effort equal to x = x∗(k) is an equilibrium.
– For any equilibrium profile with effort x, such that k

k−1x ≤ 1/2, it holds that
x ≥ (1− 1

k )x
∗(k).

4.2 Variants of Threshold(k)

There are two variations of Threshold(k) that are also of interest. We still feel
however that Threshold(k) has a higher appeal, as we demonstrate below. Both
variations require that we spend all the budget in contrast to Threshold(k),
where we may end up spending less. In the first variant below, the budget is
split up to exhaustion, among the DReps who collected delegations that are at
least a fraction of 1/k:

fi(wi) =

{
B

|j:wj≥1/k| , if wi ≥ 1/k

0, otherwise
(Variant 1)
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This variant turns out to have the following negative aspects.

Theorem 4. For any continuous and strictly increasing cost function c, the
mechanism of Variant 1 does not possess pure Nash equilibria.

Consider now a different variation, where again up to k DReps may receive
a reward but the budget is then split proportionately among them:

fi(wi) =

{
B · wi∑

j:wj≥1/k wj
, if wi ≥ 1/k

0, otherwise
(Variant 2)

Using similar arguments as in Theorem 4, we can have again a negative result,
albeit a bit weaker.

Theorem 5. For any continuous and strictly increasing cost function c, the
mechanism of Variant 2 does not always possess pure Nash equilibria that are
symmetric for the voters who exert positive effort.

Remark 4. In contrast to Variant 1, there might exist non-symmetric equilibria.
The difference with Variant 1 is that the reward of a player i when wi ≥ 1/k,
is now affected by the effort that she exerts. The equilibrium conditions for the
existence or not of such equilibria then highly depend on the cost function c(·),
something that (along with their more complex nature) makes this variant less
appealing than Threshold(k).

5 Optimizing the Number of DReps

Motivated by the previous results on the Threshold(k) mechanism and Corollary
1, we investigate now the problem from an optimization perspective. Hence, we
focus on determining the optimal number k of DReps for a given budget. That
is, the problem of maximizing the probability of success in the symmetric case,
where the effort exerted is the same for all the DReps who do so as described
by (7) (which in some cases turns out to be the optimal even under the more
general solution space where the voters could exert different efforts).

5.1 General Bounds

We start with proving a general upper bound on the probability of success which
applies to any number of DReps and to the non-symmetric case (Theorem 6).
This result plays a key role for the analysis of concave costs (Section 5.2) as well
as for the more general concave-convex ones (Section 5.3). By a slight abuse of
notation, in the sequel, for effort vectors of the form x = (x1, 0, . . . , 0), we will
use Psucc(x1) instead of Psucc(x), and similarly for Psucc(x1, x2, . . . , xn).

Theorem 6. For any number of DReps with (possibly non-symmetric) efforts
x = (x1, x2, . . . , xn), it holds that

Psucc(x) ≤ Psucc(y) = 1/2 + y , y = x1 + x2 + · · ·+ xn . (9)
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Note that the above result implies that a single DRep is optimal whenever
effort y does not violate the budget constraint, i.e., if c(y) ≤ B. The dependency
on the budget B is somewhat unavoidable, even for the case of convex costs
(Section 5.4).

5.2 Concave (and linear) case: One DRep is optimal

An immediate consequence of Theorem 6 is that for concave (and thus also for
linear) cost functions, the optimal solution consists of a single DRep. Indeed, for
any concave cost function c(·), and any effort vector (x1, . . . , xn), the solution
which utilizes a single DRep with effort y = x1+ · · ·+xn still satisfies the budget
constraint (6), thus implying the following.

Corollary 2. For any concave cost function, there is always an optimal solution
consisting of a single DRep with effort x1 such that c(x1) = B, where B is the
budget. Hence, using asymmetric efforts does not help in this case. Moreover,
for the strictly concave case, one DRep is strictly better than several DReps.

Corollary 2 reveals an extreme scenario, where if one cares for the absolute
maximum for the probability of electing the correct outcome, just one delegate
suffices. Clearly, practical considerations would enforce larger committees, but
the main intuition behind the corollary is that a small committee size suffices to
have a good quality outcome under concave costs.

5.3 Concave-convex case: Too many DReps are not optimal

In this section, we consider the more general class of cost functions, namely,
concave-convex ones, which arise in many real world settings as a means to
capture more accurately the cost of information acquisition (in Section 6 we
elaborate on this). An example showing the shape of concave-convex functions
can be seen in Figure 1. We shall prove below general bounds on the maximum
number of DReps that produce optimal solutions, and the corresponding efforts.
The main message of this section is that the optimal number of DReps cannot be
too high, and can be upper bounded by appropriate parameters with a geometric
interpretation that we define below (and hence also establishing lower bounds
on the minimal effort at an optimal solution).

For x > 0, the maximum number of DReps with equal effort x that we can
use, given a cost function c(·) and budget B, is equal to kmax(x, c) :=

⌊
B

c(x)

⌋
.

The following lemma states some natural properties of the success probability.

Lemma 1. The success probability Psucc(x, k) is monotone increasing in both
the effort x and in the number of DReps k. That is, Psucc(x, k) ≤ Psucc(x, k+1)
and Psucc(x, k) < Psucc(x

′, k) for all x′ > x.

Our first result (Theorem 7 below) is based on a geometric argument shown
in Figure 1, and formally captured by this definition.
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xint

c(x)

clin(x)B

Fig. 1. The idea of Theorem 7.

xc
inflection

c(x)

clin(x)

xc
tangent

B∗

Fig. 2. The idea of Theorem 8 with the in-
flection point xc

inflection and point xc
tangent.

Definition 1. For any concave-convex cost function c(·) and for any budget B,
we let clin(x) = αc,B ·x be the linear cost function such that c(·) and clin(·) take
the same value B at some common point x1 > 0, i.e., c(x1) = B = clin(x1).
Then, we denote by xint = xint(c,B) the largest value x such that clin(x) ≤ c(x)
for all x ∈ [0, xint(c,B)] such that c(x) ≤ B.

We first provide a general lower bound on the minimum effort for the optimal
symmetric solutions, thus implying that the number of DReps cannot be too
large.

Theorem 7. For any concave-convex cost function c(·) and any budget B, the
optimal symmetric solution with identical efforts must use at least an effort level
of xint, and thus at most kmax(xint, c) DReps, where xint = xint(c,B) > 0 is
given in Definition 1.

Remark 5. Note that for smaller values of B, the bounds provided by the pre-
vious theorem get better, as the critical value xint = xint(c,B) increases (see
Figure 1), which rules out more values from the optimum. Conversely, for in-
creasing values of the budget B, the bounds of the previous theorem become
weaker, as the opposite happens.

Moving on, the influence of the budget B suggested by the previous remark
is the main focus of the remaining of this (and the next) section. We first note
that Theorem 7 implies a stronger version of the result for concave costs. The
idea is shown in Figure 1, and formalized by the next definition.

Definition 2. For any concave-convex cost function c(·), let xc
inflection denote

its inflection point (where the switch from concave to convex occurs). More-
over, let xc

tangent be the largest point such that the line from the origin passing
through xc

tangent is entirely below the cost function, and the two curves intersect
at xc

tangent. That is, the linear cost clin(·) such that clin(xc
tangent) = c(xc

tangent)
satisfies clin(x) ≤ c(x) for all x such that c(x) ≤ B.

Observe that for B = B∗ := c(xc
tangent), the point xint(c,B) in Theorem 7

coincides with xc
tangent, and kmax(xint, c) = 1; the same is true for B < B∗ as we
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consider the cost function restricted to a smaller interval – condition c(x) ≤ B
in Definitions 1 and 2.

Corollary 3. For any concave-convex cost function c(·), and for any budget
B ≤ B∗, there is always an optimal solution consisting of a single DRep with
effort x1 such that c(x1) = B, where B∗ = c(xc

tangent).

We note that for concave functions, the condition on the budget required by
the previous corollary is always satisfied, and therefore Corollary 3 generalizes
Corollary 2.

We conclude this section by considering an arbitrarily large budget B and
an improved version of the result in Theorem 7, if the following condition holds.

Assumption 1 (monotonicity) For any linear cost function clin(x) = a · x
with a > 0, the success probability is monotone decreasing with the number of
DReps (while using the same corresponding maximum effort per DRep). That
is, for any x ≤ x′, Psucc(x, k) ≤ Psucc(x

′, k′), where k = kmax(x, clin) and
k′ = kmax(x

′, clin).

The next theorem provides better bounds for large B, showing that the
optimal solution with equal efforts is situated in the region where xc

tangent >
xint(c,B). This result is conditioned on the above assumption, which we verified
experimentally for several values of a and k, although we have not been able to
formally prove it. In Appendix B we provide further evidence for this assump-
tion by proving a slightly weaker version of it. The idea of the proof of the next
theorem is shown in Figure 2,

Theorem 8. Suppose Assumption 1 holds. Then, for any concave-convex cost
function c(·), and any budget B, the optimal solution with identical efforts must
use at least xc

tangent effort level and thus at most kmax(x
c
tangent, c) DReps.

5.4 Convex case: The budget matters for the optimal number of
DReps

One might conjecture that the convex case behaves inversely to the concave case,
implying that many DReps are superior to fewer. However, we demonstrate that
this presumption does not hold true, revealing a more intricate scenario (shown
in Theorem 9 below). In particular, it holds that:

1. For certain convex costs, the superiority of three DReps over one hinges on
the budget B.

2. The resolution of the former inquiry is contingent upon the specific convex
function, even within costs of the form c(x) = xβ , parameterized in β > 1.

This indicates that a straightforward “monotonicity" argument asserting the
supremacy of larger committees does not universally apply in the convex case.

The next lemma allows us to compare k = 3 with k = 1 on general cost
functions, and it will also be used in Section 6 for a specific class of concave-
convex cost functions.
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Lemma 2. Given any cost function c(x) and any budget B, three DReps are bet-
ter than one DRep (w.r.t. the success probability) if and only if the corresponding
optimal efforts, x∗(1) and x∗(3), satisfy

x∗(1) <
3x∗(3)− 4x∗(3)3

2
. (10)

The above lemma yields the following result for convex costs. We note that
the result is analogous to the one obtained in [11], which also considers convex
costs though in a slightly different setting.

Theorem 9. For the family of convex cost functions c(x) = xβ, with β > 1,
and for β⋆ := ln(3)

ln(3)−ln(2) ≈ 2.7095, the following holds:

1. For β < β⋆, one DRep is always better than three DReps, regardless of B.
2. For β > β⋆, three DReps with equal effort are better than a single DRep if

and only if the budget B is at most B⋆ = 33/2 ·
(

31−1/β−2
4

)β/2

.

We provide a numerical example for a simple (low degree) convex cost func-
tion.

Example 1 (budget-dependence for convex functions). Consider the convex cost
function c(x) = x4. By applying Theorem 9, we have that three DReps with
equal effort are better than a single DRep if and only if the budget B is at most

B⋆ =

(
3

3
2 −2·3

3
4

4

)2

≈ 0.0254. Moreover, the largest benefit for three DReps

against a single DRep is for a budget equal to B⋆⋆ =

(
4 4√3 x2−3

3
4 +2

2

)4

. ⊓⊔

Overall, the question of determining the optimal committee size with convex
functions seems quite challenging. Even generalizing Theorem 9, to understand
e.g. if k′′ DReps are better than k′ DReps for k′′ > k′ > 3, leads to a more
complex analysis, since one needs to account for all the different probability
events that can lead to the correct outcome. We leave this as an interesting open
problem for future work.

6 Application to S-shaped learning curves

In this section, we focus on certain classes of concave-convex costs which are
derived by some S-shaped learning curves considered in the literature of experi-
mental psychology [18]. Specifically, [18] proposes the following family of expo-
nential learning curves, for learning over time a new task (in our case, learning
the correct outcome),

pξ(t) = [1− exp(−µt)]ξ (11)

where the above success probability depends on the following parameters:
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1. t is the time spent on learning (cost);
2. µ is the learning rate (potentially different for each individual);
3. ξ is a complexity parameter (equal for all individuals).

The complexity parameter ξ > 1 is crucial in order to obtain S-shaped learn-
ing curves, which have been often observed in practice. As pointed out by [18],
several prior theoretical models [9,13,20] assume a “vanilla” exponential function
with ξ = 1, i.e., p(t) = 1 − exp(−µt). The major shortcoming of these theo-
retical models is the mismatch with the S-shape observed by experimentalists.
Intuitively speaking, the refined model in [18] assumes that ξ = 1 corresponds
to acquiring some “elementary skills”, while the actual tasks to be solved require
some complex combination of these skills. The latter is captured by a parameter
ξ > 1.

Remark 6 (homogeneous µ). Though the above model starts with the assump-
tion of a different learning rate per individual, the actual experiments in [18] are
conducted by isolating groups of people with similar learning rate and then fit
the data of the group in order to estimate the complexity parameter ξ (the same
ξ is used across all groups). In the following, we shall consider µ as homogeneous
across all individuals, which is in line with the methodology in [18].

We next derive a concave-convex cost function c(x) which corresponds to
the above family of functions in (11). In our notation, t = c(x). Moreover,
we consider x = pξ(t)/2 so that the success probability for our two-outcomes
setting, 1/2 + x = 1/2 + pξ(t)/2, attains its minimum of 1/2 when the cost
for the corresponding player is zero. We thus have this relation: 2x = pξ(t) =
[1−exp(−µc(x))]ξ, which is equivalent to exp(−µc(x)) = 1−(2x)1/ξ . The latter
identity leads to the next definition for c(x).

Definition 3. The cost function associated to the exponential-learning curve
(11) with complexity ξ and learning rate µ is defined as

cξ(x) := − 1

µ
ln
(
1− (2x)1/ξ

)
. (12)

Figure 3 shows an example of these concave-convex cost functions. The next
lemma provides useful features of these cost functions.

Lemma 3. For every complexity parameter ξ > 1, the cost function cξ in (12)
is a concave-convex function whose inflection point does not depend on the (in-
dividual) learning parameter µ but only on ξ. In particular, the inflection point
is x̃ = 1

2 (1− 1/ξ)ξ and the corresponding cost is cξ(x̃) = ln(ξ)/µ.

We next quantify the optimal symmetric efforts for this family of functions.

Lemma 4. For the cost function cξ in (12) the optimal symmetric effort x∗(k),
given a budget B, is equal to x∗(k) =

pξ(B/k)
2 = [1−exp(−Bµ/k)]ξ

2 .
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Fig. 3. An example of a concave-convex cost function from exponential learning (Def-
inition 3).

The next result concerns the optimality of one DRep when the budget is “not
too high”. Note that the result applies to a range of values for the budget, for
which the largest feasible effort can be bigger than the inflection point, and thus
we are still effectively considering a concave-convex cost function.

Corollary 4. For the cost function cξ in (12) one DRep is optimal for any
budget B ≤ B∗, where B∗ is defined as in Corollary 3 and it satisfies B∗ >
ln(ξ)/µ. In this case, the optimal probability of success is equal to 1/2+pξ(B)/2 =

1/2 + [1−exp(−Bµ)]ξ

2 .

Similarly to the convex case in Section 5.4, one DRep is not always optimal,
and this depends on the budget B. In particular, Lemma 2 leads to the following
observation.

Observation 1. There exists a value Bthree such that, for any budget B ≥
Bthree three DReps are better than one DRep. This is because, for sufficiently
large B, we are in the region where the curve gets sufficiently steep (see Figure 3),
and condition (10) of Lemma 2 is satisfied for the values given by Lemma 6. For
example, this happens at Bthree ≈ 4.35 for the curve in Figure 3 (µ = 1 and
ξ = 2).

Finally, we can also use Theorem 3 to obtain a characterization of the equi-
libria of the Threshold(k) mechanism. This can be found in the Appendix.

7 Conclusions

We have explored the questions of designing reward schemes and determining
an appropriate number of representatives both from a game-theoretic and an
optimization viewpoint. For proposing reward schemes, our results reveal that
threshold-like mechanisms are more preferred as they seem to incentivize bet-
ter the DReps on exerting more effort. Regarding the question of determining
optimal committee sizes, our findings differ based on the type of cost function
and on the available budget. In many cases however, as revealed in Section 5, a
small number of representatives suffices for increasing the chances to select the
correct outcome in the underlying election.
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A Appendix with Omitted Proofs

A.1 Proof of Theorem 1

Proof. Given a strategy profile x = (x1, . . . , xn), the utility of a player i is

xi ·B∑
j xj

− axi .

By taking the first order conditions we get that at equilibrium, we must have:

∂fi(x)

∂xi
= c′(xi) ⇔ B ·

∑
j ̸=i xj

(
∑

j xj)2
= a ∀i .

Since we are looking for symmetric equilibria, we can set xj = x for every j
and solve the above system of equations. Then the nominator above becomes
B(n− 1)x and the denominator equals n2x2, and therefore, the solution we get
for x is precisely the quantity in the statement of the theorem.

A.2 Proof of Theorem 2

Proof. Without loss of generality, assume for convenience that B = 1 and that
n is odd. Consider the symmetric equilibrium profile x, with xi = x = n−1

an2 for
every i. Then, the probability of selecting the correct outcome equals

Psucc(x) =

n∑
i=n/2+1

(
n

i

)
(1/2 + x)i(1/2− x)n−i . (13)

After substituting the value of x, we get

Psucc(x) =

n∑
i=n/2+1

(
n

i

)
(1/2 +

(n− 1)

an2
)i(1/2− (n− 1)

an2
)n−i

=

(
1

2an2

)n

·
n∑

i=n/2+1

(
n

i

)
(an2 + 2n− 2)i(an2 − 2n+ 2)n−i .

Note now that for every i in the summation, the term (an2+2n−2)i(an2−2n+
2)n−i is asymptotically equal to (an2)n + o((an2)n). By taking this out of the
sum, and taking the limit, we have after the cancellations of these terms that:

lim
n→∞

Psucc(x) = lim
n→∞

∑n
i=n/2+1

(
n
i

)
2n

=
1

2

where we used the fact that
∑n

i=n/2+1

(
n
i

)
= 2n−1.
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A.3 Proof of Theorem 3

Proof. First, notice that by the definition of the mechanism, if more than k
players exert positive effort, only k of them (the ones with the highest effort)
will be rewarded. To see this, observe that given the fact that

∑
i wi = 1, it

is not possible for more than k in total wi’s to be bigger than 1/k. Therefore,
there can be no equilibrium where more than k players exert a positive effort,
since then the lowest-effort players would have an incentive to deviate to zero
effort. At the same time, there can be no equilibrium where the set of players
with positive effort has a cardinality that is less than k. To see this, assume for
contradiction that there exists an equilibrium where S is the set of players that
exerts positive effort, and and for which we have that |S| = l < k. For each
player i ∈ S, it holds that wi ≥ 1/k as otherwise i could deviate to zero effort
and improve her utility. Now, let i∗ be the player in S that exerts the maximum
effort. It is easy to see that xi∗∑

i∈S xi
≥ 1/l > 1/k. By the latter, we derive that

there always exists an ϵ > 0 such that xi∗−ϵ∑
i∈S xi−ϵ ≥ 1/k. Therefore, player i∗

could deviate to x∗
i − ϵ effort and claim the reward at a lower cost (recall that

the cost function is strictly increasing). As this deviation improves her utility,
we end up to a contradiction.

From the above discussion, we get that at an equilibrium we have exactly
k players that exert positive effort, and for every such player i, we have wi ≥
1/k (as otherwise she could improve her utility by deviating to zero effort).
Combining the aforementioned conditions with the fact that

∑
i wi = 1, we get

that all the players with xi > 0 exert exactly the same effort. Therefore, we
conclude that the only profiles that we need to examine are the ones where
exactly k players make a positive and equal effort.

Consider such a strategy profile in the form (x, . . . , x, 0, . . . , 0). Let us look
at a player who does not make any effort. If this player deviates in order to get
better off, the only meaningful action is to select an effort level x̄ > x so as to
attract a delegation of at least 1/k. To do so, x̄ should satisfy

x̄

kx+ x̄
≥ 1/k ⇒ x̄ ≥ k

k − 1
x .

If k
k−1x > 1/2, then this is not a feasible deviation. Otherwise, the deviation is

feasible, but since we do not want it to be a successful one, the total utility after
the deviation should be non-positive. Therefore we must have that c(x̄) ≥ B/k
for any x̄ ≥ k

k−1x. The cost function is non-decreasing, hence it suffices that

c

(
k

k − 1
x

)
≥ B

k
.

We come now to the players who exert effort x. None of these players has an
incentive to exert a higher effort, since they will not receive a higher payment. If
on the other hand such a player i makes a lower effort x′ < x, then her reward
drops to 0, as x′∑

j ̸=i x+x′ <
x∑
j x = 1

k . Hence, it suffices that her initial utility is
non-negative to ensure we are at an equilibrium, i.e., B/k ≥ c(x). This completes
the proof.
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A.4 Proof of Corollary 1

Proof. When requiring a committee of exactly k DReps, the optimal effort has
to satisfy that kc(x∗(k)) = B. Hence B/k = c(x∗(k)). This means that for
x = x∗(k), the equilibrium conditions of Theorem 3 are satisfied. For the second
part of the corollary, note that for any other equilibrium profile with effort x,
and with k

k−1x ≤ 1/2, by Theorem 3, we have that c( k
k−1x) ≥ B/k = c(x∗(k)).

Since our function is increasing, it should hold that k
k−1x ≥ x∗(k), and thus

x ≥ (1− 1
k )x

∗(k). ⊓⊔

A.5 Proof of Theorem 4

Proof. As in the proof of Theorem 3, there can be no pure equilibrium where
more than k players exert a positive effort.

Hence, let us focus on the existence of equilibria that are symmetric w.r.t.
the DReps who exert a positive effort. Consider first a profile where k people
exert a positive effort x. Suppose now that one of these k DReps is deviating
to exert effort x + ϵ, for some small ϵ > 0. By doing so, she will become the
only player attracting at least a fraction of 1/k of delegations (all the others
will attract slightly less than 1/k of the total delegations). Hence she will have
the budget B by herself. Now for this to be a successful deviation, the following
needs to hold for some ϵ:

B − c(x+ ϵ) >
B

k
− c(x) ⇒ c(x+ ϵ)− c(x) < (1− 1

k
)B

Since the cost function is continuous, we can always find an ϵ satisfying the
above condition for any x. Therefore, the profile we started with cannot be an
equilibrium.

Consider now a profile where ℓ people exert a positive effort x, for some ℓ < k.
Suppose now that one of these ℓ DReps, say voter i, is deviating to exert effort
x− ϵ. It is straightforward that since ℓ < k, there exists a small enough ϵ so that
x− ϵ is still at least a 1/k fraction of the total effort exerted. Hence DRep i will
still attract at least 1/k of the total delegations, and the same is true for the
other ℓ − 1 DReps. This means that i will continue to receive the same reward
but with a lower cost since the cost function is strictly increasing, which means
that the profile cannot be an equilibrium.

Finally, consider a non-symmetric profile, where at least 2 DReps have dif-
ferent efforts, say xi > xj , where xi is the maximum effort exerted. But then
DRep i can lower her effort by some ϵ and still maintain at least a 1/k fraction
of the delegations, and the same reward. Hence such a profile also cannot be an
equilibrium.

A.6 Proof of Theorem 5

Proof. Using the same arguments as in the proof of Theorem 4, there can be
no pure equilibrium where k or more than k players exert a positive and equal
effort.
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Consider now a profile where ℓ people exert a positive effort x, for some ℓ < k.
We provide an instance with 3 DReps, k = 3, therefore ℓ ∈ {1, 2}. Assume that
we have such an equilibrium.

– If ℓ = 1, it is easy to see that the reward of the DRep who exerts positive
effort is B, while her cost is c(x). As c(·) is continuous and increasing, this
DRep, regardless of the chosen effort x, can always deviate to a smaller effort
x− ϵ > 0 and increase her total utility. A contradiction.

– If ℓ = 2, then let, w.l.o.g., DReps 1, 2 be the ones who exert positive effort
(and achieve a non-negative utility), and DRep 3 the one who exerts 0 effort.
It is easy to see that w1 = w2 = 1/2, and thus B/2 ≥ c(x). Now let DRep 3
deviate to an effort of x+ϵ. In that case we have that w1 = w2 = x/(3x+ϵ) <
1/3, while w3 = (x+ϵ)/(3x+ϵ) > 1/3, for any ϵ > 0. The latter implies that
DRep 3 gets a reward of B (as she is the only one with wi > 1/3), achieving
a positive utility as B > c(x+ ϵ) for some proper ϵ. A contradiction.

A.7 Proof of Theorem 6

In order to facilitate the recursion that we use in the proof below, we introduce
an additional definition on the probability that a DRep votes correctly, and
also a variant on the overall success probability. First, we let C(y, pCy ) denote
an artificial “compound” DRep (to be used shortly), who contributes a positive
weight y on the overall success with some probability pCy , and a negative weight
−y with probability pC−y = 1− pCy . Second, we let P̂succ(·) be the probability of
success for the variant in which, when the votes lead to a tie, the correct outcome
is selected with probability 1, instead of 1/2. We thus have

Psucc(x1, x2, . . . , xn) ≤ P̂succ(x1, x2, . . . , xn) . (14)

Without loss of generality, assume x1 ≥ x2 and let S denote the event that
DReps 1 and 2 vote in the same way, and by S its complement. Recall also that
pxi = 1/2 + xi. We then have

P (S) = px1
px2

+ (1− px1
)(1− px2

) , (15)

P (S) = px1
(1− px2

) + (1− px1
)px2

= 1− P (S) . (16)

For each event, the resulting compound DRep (arising by trying to view Drep
1 and 2 as one entity) has a probability of yielding a positive weight towards
selecting the correct outcome, given by

pCx1+x2
=

px1
px2

P (S)
, pCx1−x2

=
px1

(1− px2
)

P (S)
. (17)

We next relate the probabilities of the compound DRep to the usual DRep
probabilities.
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Lemma 5. For any x1 ≥ x2 we have

pCx1+x2
= px1+x2 − qx1+x2 qx1+x2 = (x1 + x2) ·

4x1x2

1 + 4x1x2
≥ 0 (18)

pCx1−x2
= px1−x2

− qx1−x2
qx1−x2

= (x1 − x2) ·
−4x1x2

1− 4x1x2
≤ 0 (19)

thus implying pCx1+x2
≤ px1+x2 and pCx1−x2

≥ px1−x2 .

Proof. Observe that

pCx1+x2
=

px1
px2

px1
px2

+ (1− px1
)(1− px2

)
=

1

2
+

x1 + x2

1 + 4x1x2
(20)

pCx1−x2
=

px1(1− px2)

px1
(1− px2

) + (1− px1
)px2

=
1

2
+

x1 − x2

1− 4x1x2
. (21)

We are now in a position to prove the main result of this section.
Proof of Theorem 6. We prove by induction on n that P̂succ(x1, x2, . . . , xn) ≤
P̂succ(x1 + x2 + · · · + xn), which implies the theorem by inequality (14) and
since for a single DRep, P̂succ(y) = py = Psucc(y) for any value y ≥ 0. The base
case n = 1 holds by definition since P̂succ(x1) = px1 . Without loss of generality,
assume x1 ≥ x2 and let S denote the event that DReps 1 and 2 vote in the same
way, and by S it complement. We denote by P̂succ(·|E) the probability of success
conditioned to event E. Then, for qS := pCx1+x2

and qS := pCx1−x2
, we have

P̂succ(x1, . . . , xn) = P̂succ(x1, . . . , xn|S)P (S) + P̂succ(x1, . . . , xn|S)P (S) (22)

= P̂succ(C(x1 + x2, qS), x3, . . . , xn)P (S)+ (23)

+ P̂succ(C(x1 − x2, qS), x3, . . . , xn)P (S) . (24)

Let Voth ≥ α be the event that the votes of the other DReps, i.e., 3, . . . , n
contribute a sum of at least α, where we use the interpretation described after
(5) that a voter contributes either a positive or negative weight when voting for
the correct or the wrong outcome respectively. From Lemma 5

P̂succ(C(x1 + x2), x3, . . . , xn) =

pCx1+x2
· P (Voth ≥ −x1 − x2) + (1− pCx1+x2

) · P (Voth ≥ x1 + x2) =

(px1+x2
− qx1+x2

) · P (Voth ≥ −x1 − x2)+

(1− px1+x2
+ qx1+x2

) · P (Voth ≥ x1 + x2) =

px1+x2
· P (Voth ≥ −x1 − x2) + (1− px1+x2

) · P (Voth ≥ x1 + x2)+

qx1+x2
· [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)] =

P̂succ(x1 + x2, x3, . . . , xn)+

qx1+x2 · [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)] .
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Similarly,

P̂succ(C(x1 − x2), x3, . . . , xn) =

pCx1−x2
· P (Voth ≥ −x1 + x2) + (1− pCx1−x2

) · P (Voth ≥ x1 − x2) =

(px1−x2 − qx1−x2) · P (Voth ≥ −x1 + x2) + (1− px1−x2+

qx1−x2) · P (Voth ≥ x1 − x2) =

px1−x2 · P (Voth ≥ −x1 + x2) + (1− px1−x2) · P (Voth ≥ x1 − x2)+

qx1−x2 · [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)] =

P̂succ(x1 − x2, x3, . . . , xn)+

qx1−x2
· [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)] .

Putting things together

P̂succ(x1, x2, . . . , xn) = P̂succ(x1 + x2, x3, . . . , xn)P (S)

+ P̂succ(x1 − x2, . . . , xn)P (S)

+ qx1+x2 · [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)]P (S)

+ qx1−x2 · [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)]P (S)

≤ P̂succ(x1 + x2 + x3 + · · ·+ xn)− 2x2P (S) (25)
+ qx1+x2

· [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)]P (S)

+ qx1−x2
· [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)]P (S)

where the inequality follows by the inductive hypothesis. To complete the proof
we need to show that the above quantity is at most P̂succ(x1+x2+x3+ · · ·+xn).
It is enough to prove

qx1+x2 · [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)]P (S)+

+qx1−x2 · [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)]P (S) ≤ 0 . (26)

Note that we have the following properties

P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2) = −P (Voth ∈ [−x1 − x2, x1 + x2))
(27)

P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2) = −P (Voth ∈ [−x1 + x2, x1 − x2))
(28)

and

P (S) = 1/2 + 2x1x2 , qx1+x2
= (x1 + x2) ·

4x1x2

1 + 4x1x2
= (x1 + x2) ·

2x1x2

P (S)
,

(29)

P (S) = 1/2− 2x1x2 , qx1−x2
= (x1 − x2) ·

−4x1x2

1− 4x1x2
= (x1 − x2) ·

−2x1x2

P (S)
.

(30)
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Hence

qx1+x2 · [P (Voth ≥ x1 + x2)− P (Voth ≥ −x1 − x2)]P (S) =

2x1x2(x1 + x2)[−P (Voth ∈ [−x1 − x2, x1 + x2)] ,

and

qx1−x2 · [P (Voth ≥ x1 − x2)− P (Voth ≥ −x1 + x2)]P (S) =

2x1x2(x1 − x2)[P (Voth ∈ [−x1 + x2, x1 − x2)] ≤
2x1x2(x1 + x2)[P (Voth ∈ [−x1 + x2, x1 − x2)] ≤

2x1x2(x1 + x2)[P (Voth ∈ [−x1 − x2, x1 + x2)] .

By putting together these equations we obtain (26). The latter together with
(25) implies

P̂succ(x1, x2, . . . , xn) ≤ P̂succ(x1 + x2 + x3 + · · ·+ xn).

This completes the proof.

A.8 Proof of Lemma 1

Proof. For the first part, we argue as follows. For any good subset S for k DReps,
i.e., any subset of at least k/2 DReps, we construct a new subset Ŝ := S∪{k+1}
which is good for k + 1 DReps. Note that distinct subsets S ̸= S′ for k DReps
are mapped into different new subsets Ŝ ̸= Ŝ′ as we are adding the new DRep
k + 1. We now formally prove that the success probability in the new subsets is
higher. Indeed, the initial probability is

PS(x) := (1/2 + x)|S|(1/2− x)k−|S| (31)

and the probability of the new subset is

PŜ(x) := (1/2 + x)|S|+1(1/2− x)k−|S|−1 = PS(x) ·
1/2 + x

1/2− x
≥ PS(x) . (32)

Putting things together,

Psucc(x, k) =
∑

S:|S|>k/2

PS(x) +
1

2

∑
S:|S|=k/2

PS(x)

(32)
<

∑
S:|S|>k/2

PŜ(x) +
1

2

∑
S:|S|=k/2

PŜ(x)

≤
∑

Ŝ:|Ŝ|>(k+1)/2

PŜ(x) +
1

2

∑
Ŝ:|Ŝ|=(k+1)/2

PŜ(x) = Psucc(x, k + 1) ,
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where the last inequality follows from the observation that, in our mapping,
|Ŝ| = |S|+ 1 and therefore |Ŝ| ≥ k/2 + 1 > (k + 1)/2 whenever |S| ≥ k/2.

As for the second part, we show that the probability of failure associated to
each bad subset S, i.e., a subset of at most k/2 DReps, is monotone decreasing
in x. Indeed, for any S with |S| ≤ k/2,

PS(x)
(31)
= ((1/2 + x)(1/2− x))|S|(1/2 + x)k−2|S|

= (1/4− x2)|S|(1/2− x)k−2|S| ,

and because k − 2|S| ≥ 0 both terms are decreasing in x. Therefore PS(x) ≥
PS(x

′) for any x′ > x, thus implying the following inequality:

Pfail(x, k) := 1− Psucc(x, k) =
∑

S:|S|<k/2

PS(x) +
1

2

∑
S:|S|=k/2

PS(x)

≥
∑

S:|S|<k/2

PS(x
′) +

1

2

∑
S:|S|=k/2

PS(x
′)

=Pfail(x
′, k) = 1− Psucc(x

′, k)

which completes the proof.

A.9 Proof of Theorem 7

Proof. Let clin(x) := αc,B · x be as in Definition 1, that is,

c(x1) = B = αc,B · x1 , (33)

where x1 as above is the effort that one DRep can use for cost function c(·) and
budget B. Then, by the concave part of c(x) and by the definition of xint, we
have

c(x) > clin(x) = αx for all x ∈ (0, xint) (34)

and therefore

kmax(x, c) ≤ kmax(x, clin) for all x ∈ (0, xint) . (35)

Hence, for any x ∈ (0, xint) we have

Psucc(x, kmax(x, c)) ≤Psucc(x, kmax(x, clin)) (Lemma 1 and (35))
≤Psucc(xint, kmax(xint, clin)) (Lemma 1 and x < xint)

and since kmax(xint, c) = kmax(xint, clin) = 1 the latter quantity is

=Psucc(xint, 1) .

This completes the proof.
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A.10 Proof of Theorem 8

Proof. From Definition 2, for any x ≤ xc
tangent we have clin(x) ≤ c(x) and thus

kmax(x, c) ≤ kmax(x, clin),

with equality holding for x = xc
tangent, that is,

kmax(x
c
tangent, c) = kmax(x

c
tangent, clin).

Hence,

Psucc(x, kmax(x, c)) ≤ (Lemma 1 and kmax(x, c) ≤ kmax(x, clin))
Psucc(x, kmax(x, clin)) ≤ (Assumption 1 and x ≤ xc

tangent)

Psucc(x
c
tangent, kmax(x

c
tangent, clin)) = (kmax(x

c
tangent, c) = kmax(x

c
tangent, clin))

Psucc(x
c
tangent, kmax(x

c
tangent, c)) .

This completes the proof.

A.11 Proof of Lemma 2

Proof. For x = x∗(1) and y = x∗(3), we consider the function

f(x, y) :=Psucc(x
∗(1))− Psucc(x

∗(3), x∗(3), x∗(3)) (36)

=1/2 + x− 1 + (1− px∗(3))
3 + 3px∗(3)(1− px∗(3))

2 (37)

=x− 1

2
+

(
1

2
− y

)3

+ 3

(
1

2
− y

)2 (
1

2
+ y

)
(38)

whose roots are given by the identity

x =
y(3− 4y2)

2
,

for y < 1/2 which implies x > 0. The lemma follows from the observation
that f(x, y) is increasing in x and, by definition, f(x, y) < 0 if and only if
Psucc(x

∗(1)) < Psucc(x
∗(3), x∗(3), x∗(3)).

A.12 Proof of Theorem 9

Proof. Since the optimal efforts with one and three DReps, x∗(1) and x∗(3)

respectively, satisfy c(x∗(1)) = B = 3c(x∗(3)), we have x∗(3) = x∗(1)
31/β

. Condition
(10) in Lemma 2 boils down to

x∗(1) <
3x∗(1)

31/β
− 4x∗(1)3

33/β

2
⇔ 2− 3

1

31/β
< −4

x∗(1)2

33/β
(39)

⇔ x∗(1)2 <
33/β

4
(31−1/β − 2) . (40)
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For β < β⋆, we have 31−1/β < 31−1/β⋆

= 3ln(2)/ ln(3) = 2, thus implying
that the inequality above cannot hold. In particular, for all x∗(1) the opposite
inequality holds strictly and thus (Lemma 2) one DRep is better that three
DReps. This proves the first part of the theorem.

For β > β⋆, the inequality above holds and it actually gives

x∗(1) <
1

2

√
33/β(31−1/β − 2) (41)

which combined with the identity B = c(x∗(1)) = x∗(1)β yields

B1/β <
1

2

√
33/β(31−1/β − 2) ⇔ B < 33/2 ·

(
31−1/β − 2

4

)β/2

= B⋆ (42)

which proves the second part of the theorem. This completes the proof.

A.13 Proof of Lemma 3

Proof. As shown in [18], the learning curve in (11) has an inflection point at
t̃ = ln(ξ)/µ, for all ξ > 1. Thus, the corresponding inflection point x̃ for the cost
function (12) corresponds to

2x̃ = pξ(t̃) = [1− exp(−µt̃)]ξ = [1− exp(− ln(ξ))]ξ = [1− 1/ξ]ξ (43)

which proves the statement regarding the inflection point. To see why cξ is
concave-convex we observe the following. The function pξ(t) is shown to be
strictly increasing convex-concave in its argument t in [18]. Then the inverse
function p−1

ξ (p) exists and is concave-convex in p ∈ (0, 1). Finally, our cost
function cξ(x) satisfies p = 1/2+x and t = cξ(x) = p−1

ξ (1/2+x), and thus cξ(x)
is concave-convex in x ∈ (0, 1/2).

A.14 Proof of Lemma 6

Proof. The optimal x∗(k) is given by the x such that k · c(x) = B, which for this
particular cost function boils down to satisfy

c(x) = − 1

µ
ln(y) = B/k , y = 1− (2x)1/ξ . (44)

By rearranging the terms

exp(−Bµ/k) = y = 1− (2x)1/ξ ⇒ 2x = [1− exp(−Bµ/k)]ξ (45)

and the latter equation together with (11) yields the desired result on x∗(k).
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A.15 Proof of Corollary 4

We next quantify the optimal symmetric efforts for this family of functions.

Lemma 6. For the cost function cξ in (12) the optimal symmetric effort x∗(k),
given a budget B, is equal to x∗(k) =

pξ(B/k)
2 = [1−exp(−Bµ/k)]ξ

2 .

We are now in a position to apply the results in Section 5.3 to this specific
class of concave-convex cost functions parameterized in ξ > 1, the complexity
parameter.

Proof (Proof of Corollary 4). The first part follows from Corollary 3, with the
observation that B∗ = c(xc

tangent) > c(xc
inflection) = ln(ξ)/µ, since xc

tangent >
xc
inflection and because of Lemma 3. The second part follows from Lemma 6.

B Evidence for Assumption 1

In this section, we provide some evidence in support of Assumption 1. Obviously,
Theorem 6 says that Assumption 1 holds in the special case of k′ = 1. In further
support of Assumption 1, we prove the following weaker result saying that mono-
tonicity holds in the following case. First, we consider the case in which, instead
of reducing the number of DReps, we halve them. That is, we have k′ = 2k in
Theorem 6. Furthermore, we consider the variant in which, when the votes lead
to a tie, the correct outcome is selected with probability 1, instead of 1/2. Note
that is the same variant used in the proof of Theorem 6, and the corresponding
probability is denoted as P̂succ(·). The next theorem states that under these two
conditions, monotonicity hold.

Theorem 10 (weaker version of Assumption 1). For any linear cost func-
tion clin(x) = a · x with a > 0, the following holds. For any x ≤ x′

P̂succ(x, k) ≤ P̂succ(x
′, k′) (46)

whenever k = kmax(x, clin) and k′ = kmax(x
′, clin) satisfy k = 2k′.

Proof. Let x and x′ denote the optimal symmetric effort vectors in which k and
k′ DReps exert positive effort, for the variant with success probability 1 in case
of ties. That is, P̂succ(x, k) = P̂succ(x) and P̂succ(x

′, k′) = P̂succ(x
′). We consider

the random variables in (5) corresponding to these two optimal solutions,

Z1, Z2, . . . , Zk Z ′
1, Z

′
2, . . . , Z

′
k′ (47)

where Pr [Zi = x] = 1/2 + x and Pr [Z ′
i = x′] = 1/2 + x′. Our goal is to prove

the following inequality:

P̂succ(x) = Pr

[
k∑

i=1

Zi ≥ 0

]
≤ P̂succ(x

′) = Pr

 k′∑
i=1

Z ′
i ≥ 0

 (48)
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In order to upper bound P̂succ(x), we group the k = 2k′ random variables into
k′ pairs, forming k′ new random variables, as follows:

Yi :=
Z2i−1 + Z2i

2
. (49)

These new random variables take values in {x, 0,−x} and

Pr [Yi = x|Yi ̸= 0] =
(1/2 + x)2

1− 2(1/2 + x)(1/2− x)
=

4x2 + 1 + 4x

2(4x2 + 1))

=
1

2
+

2x

(2x)2 + 1
=

1

2
+

x′

(x′)2 + 1
≤ 1

2
+ x′ = Pr [Z ′

i = x′] .

(50)

Let Eℓ denote the event that ℓ out of the Yi’s are equal to 0, and observe that
(50) implies

Pr

[
k∑

i=1

Yi ≥ 0 | Eℓ

]
≤ Pr

 k′∑
i=1

Z ′
i ≥ 0

 = P̂succ(x
′) . (51)

Therefore,

Pr

[
k∑

i=1

Yi ≥ 0

]
=

k∑
ℓ=1

Pr

[
k∑

i=1

Yi ≥ 0|Eℓ

]
· Pr [Eℓ] (52)

(51)
≤ P̂succ(x

′) ·
k∑

ℓ=1

Pr [Eℓ] = P̂succ(x
′) . (53)

To complete the proof we observe that

P̂succ(x) = Pr

[
2k∑
i=1

Zi ≥ 0

]
(49)
= Pr

[
k∑

i=1

Yi ≥ 0

]
(52)
≤ P̂succ(x

′) (54)

which completes the proof.

C Equilibria of the Threshold Mechanism for
Concave-convex functions

For the cost functions considered in Section 6, we can have the following char-
acterization, based on Theorem 3.

Theorem 11. For the cost function cξ in (12), and for budget B, every symmet-
ric equilibrium of the Threshold(k) mechanism has exactly k DReps with positive
effort x, and x satisfies the following condition:

– either k−1
k · x∗(k) ≤ x ≤ x∗(k) and k

k−1x ∈ (0, 1/2],
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– or x ≤ x∗(k) and k
k−1x > 1/2.

Moreover, x∗(k) =
pξ(B/k)

2 = [1−exp(−Bµ/k)]ξ

2 is the optimal effort for symmetric
solutions with k DReps and budget B.

Proof. We rewrite the condition on the effort x in Theorem 3, and apply the def-
inition of our specific cost function. For the case k

k−1x ∈ (0, 1/2], the conditions
are:

c

(
k

k − 1
x

)
≥ B/k ≥ c(x) ⇐⇒

− 1

µ
ln

(
1− (

2k

k − 1
x)1/ξ

)
≥ B/k ≥ − 1

µ
ln

(
1− (2x)1/ξ

)
⇐⇒

ln

(
1− (

2k

k − 1
x)1/ξ

)
≤ −µB/k ≤ ln

(
1− (2x)1/ξ

)
⇐⇒

1− (
2k

k − 1
x)1/ξ ≤ exp(−µB/k) ≤ 1− (2x)1/ξ

that is

k − 1

k
· [1− exp(−µB/k)]k

2
≤ x and x ≤ [1− exp(−µB/k)]ξ

2
. (55)

This and Lemma 6 yield the desired result in this case.
Finally, for the case k

k−1x > 1/2 we have only the right inequality above.
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